Electrostatically Assembled Nickel Sulfide Nanoparticles for Pt-free Counter Electrode of Dyesensitized Solar Cells

<u>허성연</u>, 고종관¹, 지원석¹, 한정우¹, 이현주¹, 김종학* 연세대학교; ¹연세대학교 화공생명공학과 (jonghak@yonsei.ac.kr*)

In this study, we synthesized nickel sulfide nanoparticles with two different atomic ratios and morphologies via wet-chemistry for the application to Pt-free counter electrode of dye-sensitized solar cells (DSSCs). EDX analysis shows that Ni₃S₂ and NiS were successfully synthesized. Zeta potential of NiS was + 28.4mV in ethanol solution which is much higher than the Ni₃S₂ (+ 11.3mV). Nickel sulfide nanoparticles (NiS) with highly positive surface charge more effectively attached to the negatively charged FTO glass via electrostatic interaction than that of Ni₃S₂. As a result, loading of NiS nanoparticles (0.02mg cm⁻²) was almost two-fold greater than that of Ni₃S₂(0.01mg cm⁻²). Moreover, the processing temperature (200°C) of nickel sulfide is much lower than that of Pt (450°C), which enables the use of flexible substrates, which are preferred for quasisolid-state dye-sensitized solar cells (qssDSSCs). The qssDSSCs fabricated with NiS displayed higher efficiency (6.8%) than that of a conventional Pt electrode(5.8%).