Comparative study on zeolites, activated carbons and metal–organic framework materials for CO_2 adsorption

<u>이효상</u>, 조일흠, 김문현*, 최상옥¹, 추수태¹ 대구대학교 환경공학과; ¹삼성BP화학(주) 시험연구팀 (moonkim@daegu.ac.kr*)

Benchmark adsorbents, zeolites and activated carbons with different physicochemical properties were used for the adsorption of CO_2 at 25°C, and their adsorption capacities were compared to that of commercially-available metal-organic framework (MOF) materials. At a 840-Torr CO_2 pressure, the uptake was measured to be 7.94 and 4.10 mmol/g for the respective NaY zeolite and MSP-20 activated carbon, while all the remaining benchmarkers showed CO_2 uptakes below 3.0 mmol/g although this value was greater than that of the commercial MOFs. Neither of the specific surface area, mciro-and mesopore sizes, and pore volume were visibly associated with the indicated CO_2 uptakes. Based on the isotherms collected, it was shown that the extent of CO_2 adsorption with all the benchmarkers seems to be reached to an endpoint of each uphill road at pressures near 1 bar or slightly greater, suggesting that these adsorbents may have a low working capacity for pressure swing separation.