Sulfur tolerance mechanisms of the samarium (Sm)-doped cerium oxide (CeO₂) from first-principles

<u>임동희</u>, 김희수, 윤성필, 한종희, 남석우, 함형철* 한국과학기술연구원 연료전지연구센터 (hchahm@kist.re.kr*)

The modification of Ni-based anode by CeO_2 -based materials has been considered a promising candidate for reducing sulfur poisoning since the oxygen storage capability (OSC) of CeO_2 -based materials is expected to greatly enhance the sulfur tolerance. However, the underlying mechanism that governs the sulfur tolerance of CeO_2 -based materials still remains unclear. The current study investigates the role of samarium (Sm) in determining the sulfur tolerance of Sm doped- CeO_2 ($Sm_xCe_{1-x}O_2$) using density functional theory calculations. For this, we examined how H_2S is decomposed and SO_2 is formed on $Sm_xCe_{1-x}O_2$ and CeO_2 , and analyzed the electronic structures of the surfaces to better understand the origin of sulfur tolerance in CeO_2 -based materials. We demonstrate that Sm doping depletes electron density of lattice oxygen facilitating oxygen vacancy formation and promotes H_2S decomposition and SO_2 formation by stabilizing S and lowering SO_2 desorption energy. The enhanced S interaction on Sm doped- CeO_2 is attributed to the Sm 4f orbital that fills O2p-Ce 4f gap of CeO_2 .