수분 조건 하에서 CO₂ 분리/포집을 위한 Metal-Organic Framework 기공의 소수성화

<u>김민범</u>, C. E. Wilmer¹, Jian Liu², M. D. Levan², R. Q. Snurr¹, 배윤상^{3,*}

연세대학교; ¹Northwestern University; ²Vanderbilt University; ³연세대학교 화공생명공학 과

(mowbae@yonsei.ac.kr*)

현재 지구 온난화의 주범으로 지목되고 있는 $\mathrm{CO_2}$ 의 분리/포집을 위해 여러 방법들이 고려되고 있다. PSA와 같은 흡착분리공정의 성공적인 개발을 위해서는 실제 flue gas로 부터 $\mathrm{CO_2}$ 를 선택적으로 흡착/분리 할 수 있는 흡착제 개발이 요구된다. Metal-Organic Framework (MOF)는 높은 비표면적을 가질 뿐만 아니라 원하는 구조와 성질을 구현할 수 있는 성질을 가지기 때문에 $\mathrm{CO_2}$ 분리/포집을 위한 흡착제로서 많은 관심을 받고 있다. 특히, 일부 MOF들이 가지고 있는 unsaturated metal site는 $\mathrm{CO_2}$ 를 선택적으로 분리/포집 할 수 있는 강한 흡착점들을 제공한다. 하지만, 이러한 강한 흡착점들은 수분을 함유하고 있는 flue gas를 처리 할경우 수분에 의해 비활성화되는 것으로 알려져 있다. 본 연구에서는 니켈 기반의 MOF를 합성한 후, MOF의 unsaturated metal site에 피리딘 그룹을 결합시켜줌으로써 친수성 표면을 소수성으로 바꾸어 주었다. 그 결과, flue gas의 조성과 유사한 $\mathrm{CO_2}/\mathrm{H_2O}$ 혼합물 분리에 있어서 상당한 $\mathrm{CO_2}$ 흡착량을 유지하면서, $\mathrm{H_2O}$ 의 흡착을 획기적으로 줄일 수 있는 것을 발견하였다.