Adaptive multivariate statistical process monitoring of ammonia-based CO₂ capture process

<u>김유리</u>¹, 이민우², 박종문^{3,1,*} ¹포항공과대학교 환경공학부; ²계명대학교 화학공학과; ³포항공과대학교 첨단원자력공학부 (jmpark@postech.ac.kr*)

 CO_2 capture processes have been received considerable attention in recent years as an effective method for reducing CO_2 emission in many industries. As the environmental regulations have been strictly enforced, there is a large push to meet the higher standards in CO_2 emission for most of the industries. Therefore, ammonia-based CO_2 capture process has to collects large number of on-line measurements to ensure that process outputs meet requirements of regulations with efficient use of resources. In such a situation, multivariate statistical data analysis provides capabilities to extract desired information from a massive amount of data. The primary object of this study is to confirm that adaptive PLS model is suitable for the modeling and monitoring of the ammonia-based CO_2 capture process which has time-varying and non-stationary behaviors. This approach can provide complementary information about the inherent conditions of the process and integrate them to develop optimal monitoring system suitable for the given process.