Large pore sized mesocellular carbon foam supporting high dispersions of Pd_3Pt_1 nanoparticles for methanol-tolerant oxygen reduction reaction

<u>안선형</u>, 이진우* POSTECH (jinwoo03@postech.ac.kr*)

 Pd_3Pt_1 nanoparticles with methanol tolerance are supported on various carbon supports: mesocellular carbon foam (MSU-F-C), CMK-3, and Vulcan XC-72. The particle size of Pd_3Pt_1 (~5 nm) is larger than the pore size of CMK-3 (~3 nm), resulting in the agglomeration of Pd_3Pt_1 nanoparticles on the external surface of the CMK-3. The large pore size and high BET surface area (1084 m² g⁻¹) of MSU-F-C allows the easy formation of TPB phase and high dispersion of Pd_3Pt_1 nanoparticles, which is of great importance for a fuel cell catalyst support. Due to its highly dispersed state, $Pd_3Pt_1/MSU-F-C$ shows the superior ORR activity than $Pd_3Pt_1/Vulcan XC-72$ and $Pd_3Pt_1/CMK-3$. $Pd_3Pt_1/MSU-F-C$ is methanol tolerant at 400 rpm in the presence of 0.5 M CH₃OH, while methanol oxidation peaks are observed in the case of $Pd_3Pt_1/Vulcan$ XC-72 and $Pd_3Pt_1/CMK-3$. The high methanol tolerance and high activity of the $Pd_3Pt_1/MSU-F-C$ during an ORR suggests that it may be an economically viable candidate to become a cathode catalyst for a DMFC.