Studies on the production of synthesis gas for GTL-FPSO process applications

<u>이윤주</u>¹, 양은혁^{1,2}, 이진희^{1,2}, 조수현^{1,3}, Arunabha Datta¹, 김영철⁴, 김상우^{1,2}, 문동주^{1,2,*} ¹KIST, 청정에너지연구센터; ²UST, 청정연료 화학공학; ³고려대학교, 화공생명공학과; ⁴전남대학교, 응용화학공학부 (djmoon@kist.re.kr*)

Steam reforming(SR) and Steam CO_2 reforming(SCR) of methane for the production of syngas were investigated over Ni-based catalysts for GTL(Gas to Liquids) – FPSO (Floating Production Storage and Offloading) applications.

The Ni-based catalysts were prepared by impregnation and coprecipitation method. The catalysts before and after the reaction were characterized by N_2 physisorption, CO chemisorption, XRD, SEM and TEM techniques. The production of syngas by SCR with low pressure (1 bar) was simulated by Aspen plus for GTL-FPSO applications. In this work, the simulated results were compared with experimental results in a fixed bed SR and SCR system by controlling the operation conditions of temperature and feed molar ratios.