아민을 표면처리한 PMMA계 고체 흡착제의 이산화탄소 포집 기술

<u>조동현</u>, 박청기, 김성현* 고려대학교 화공생명공학과 (kimsh@korea.ac.kr*)

전세계 에너지의 98% 이상이 화석연료 공급에 이루어진다. 화석 연료의 연소는 온실가스인 CO_2 방출의 주된 원인이 된다. CO_2 배출량은 연 평균 9.5%씩 증가하는 추세이며 이를 멈추거나 더디게 하기 위한 연구가 많이 진행 중이다. 연소 후 가스 중 CO_2 포집 방법으로 고체흡착제를 이용한 이산화탄소 포집 기술은 흡•탈착시 에너지손실이 적으며, 폐수발생이 없고, 부식성이 적으며, 고체폐기물의 상대적인 천연성 때문에 각광받고 있다. 고체흡착제의 지지체로는 실리카, 제올라이트, 탄소 계등 비표면적이 큰 지지체가 쓰이나, 가격이 비싼 단점이 있다. 본 연구에서는 고분자, PMMA 계 지지체를 제조하여 제조단가를 낮추며, 합성시 가교도와 기공형성제를 조절하여 CO_2 흡착에 용이한 지지체의 기공크기와 기공구조를 얻었다. 또한 지지체의 CO_2 흡착량을 증가시키기 위해서 지지체표면에 아민기를 부착하였다. 사용하는 아민으로는 기본적인 2차아민인 ethylenediamine(EDA), tetraethylenepentamine (TEPA)과 acrylonitrile을 이용, 반응시켜 EDA와 TEPA의 활성을 높인 modified ethylenediamine with acrylonitrile(EDAN), modified tetraehtylenepentamine with acrylonitrile(TEPAN)을 이용하였다. 추가적으로 PMMA 지지체의 표면에 직접 가지형 아민을 성장시키는 연구를 수행하였고, 각각의 흡착제의 CO_2 흡착량을 조사하였다.