Development of new regenerable potassium-based α -alumina sorbent for post-combustion CO_2 capture

<u>조민선</u>, 김재창*, 이수출, 정석용, 이중범¹, 류청걸¹ 경북대학교; ¹한국전력연구원 (kichang@knu.ac.kr*)

A new regenerable potassium–based sorbent, which was prepared by impregnation of α -Al $_2$ O $_3$ with 30 wt% K $_2$ CO $_3$, was developed for CO $_2$ sorption and regeneration at low temperature (50~130°C). This sorbent showed high CO $_2$ sorption capacity and excellent regeneration properties during multiple tests, unlike the potassium–based γ -Al $_2$ O $_3$ sorbent which was deactivated by the formation of by-product, KAl(CO $_3$)(OH) $_2$, during CO $_2$ sorption. The excellent regeneration properties of the new regenerable sorbent are due to the formation of a KHCO $_3$ phase without by-products during CO $_2$ sorption, resulting from the structure effect of alumina. From these results, it is concluded that α -Al $_2$ O $_3$ is one of the most useful materials for designing the ideal potassium–based sorbent for CO $_2$ sorption and regeneration in the temperature range between 50°C and 130°C.