Photocatalytic CO2 reduction in H2O over Porphyrin sensetized Ti-TUD-1 catalysts

<u>Abhishek Burri</u>, 정은영¹, 박상언^{1,*} 인하대학교; ¹인하대학교 화학과 (separk@inha.ac.kr*)

Photocatalytic reduction of CO_2 with H_2O under visible light is one of dream reactions with harnessing of light. It has been demonstrated that CO_2 could be converted into useful compounds such as carbon monoxide (CO), methane (CH₄), methanol (CH₃OH), formaldehyde (HCHO), and formic acid (HCOOH) by various semiconductor type photocatalysts.

In this study, porphyrin was used as a visible light photo sensitizer due to its efficiency in chorophore property in the visible range by giving soret and Q bands of absorption. And previously, Ti-TUD-1 was proved to be active for photo degradation of dyes. So, titanium containing TUD-1 was prepared and impregnated with Tetrakis(4carboxyphenyl)porphyrin in order to be operated under visible light. This Por-Ti-TUD-1 was tested in the CO_2 reduction in water under visible light yielding CH3OH as the major product and also CO formation was confirmed in gas phase.