Ultra-thin Carbon-coated Mesoporous SnO2 Anode Material for Li-ion batteries

<u>박귀옥</u>, 김지만*, 손정국¹, 김한수², 최재만¹ 성균관대학교; ¹삼성종합기술원; ²한양대학교 (jimankim@skku.edu*)

Highly ordered mesoporous SnO_2 materials with bicontinuous *Ia3d* meso-porous structure are uniformly coated with carbon species through a dehydration reaction between 2,3-dihydroxyl-naphtalene and surface hydroxyl group in meso-porous SnO_2 .

The reversible capacity of carbon coated highly ordered mesoporous SnO_2 was 672.4mAh/g (the optimum amount of carbon species in carbon coated mesoporous SnO_2 is 12 wt%), which is a near theoretical capacity with superior cycle stability (103.9% cycle retention after 100 cycle). Such behavior is derived from the ultra-thin carbon layer covering on mesoporous SnO_2 surface which acts as buffer layer to accommodate volume change of SnO_2 and physical barrier to prevent aggregation of Sn formed during the Li alloying and dealloying.

2473