Highly durable Pt-supported Nb₂O₅-SiO₂ aerogel catalysts in the aqueousphas hydrodeoxygenation of 1-propanol

<u>류지혜</u>^{1,2}, 서영웅³, 김성민³, 최재욱¹, 하정명¹, 안동준², 서동진^{1,*} ¹한국과학기술연구원; ²고려대학교; ³한양대학교 (disuh@kist.re.kr*)

Pt catalysts supported on crystalline $\mathrm{Nb_2O_5} \bullet \mathrm{xH_2O}$, and amorphous $\mathrm{SiO_2}$, $\mathrm{Al_2O_3}$ and $\mathrm{Nb_2O_5}$ aerogels were tested for their activity in the aqueous phase hydrodeoxygenation (APHDO) of 1–PrOH at 230 °C and 35 bar. The catalysts supported on amorphous $\mathrm{SiO_2}$, $\mathrm{Al_2O_3}$, $\mathrm{Nb_2O_5}$ and crystalline niobic acid calcined at 500 °C showed low activities or deactivation. Under the APHDO condition, these supports experienced a structure transformation to crystalline quartz, boehmite and niobia TT phase. Thus, $\mathrm{Pt/Nb_2O_5}$ – $\mathrm{Al_2O_3}$ and $\mathrm{Pt/Nb_2O_5}$ – $\mathrm{SiO_2}$ aerogels were prepared and tested; however, the former catalyst experienced the crystallization into TT– $\mathrm{Nb_2O_5}$ and boehmite under the reaction condition. In contrast, $\mathrm{Pt/Nb_2O_5}$ – $\mathrm{SiO_2}$ aerogels with different $\mathrm{Nb/(Nb+Si)}$ ratios were found to retain X–ray amorphous and porous structure. Also, their acid site densities were negligibly changed during the reaction. In terms of the catalytic performance, $\mathrm{Pt/Nb_2O_5}$ – $\mathrm{SiO_2}$ aerogel catalysts exhibited the similar conversion around 50% up to 24 h and the molar propane/ethane ratio increased to about 1.0 with the acid site density.