CO₂ absorption property of Ca-based sorbents promoted with alkali metal

<u>임은지</u>, 이수출, 채호진, 유천용, 조민선, 김재창* 경북대학교 (kjchang@knu.ac.kr*)

The CO_2 absorption property of various sorbents such as calcium oxide (CaO, Aldrich) and Ca-based sorbents promoted with alkali metals was investigated in the presence of 9 vol.% water vapor and 10 vol.% CO_2 in a typical fixed-bed reactor at 600°C. Ca-based sorbents were prepared by the impregnation of CaO (Aldrich) with $\mathrm{Na}_2\mathrm{CO}_3$ or $\mathrm{K}_2\mathrm{CO}_3$. The Ca-based sorbents promoted with alkali metals showed the exellent CO_2 capture capacity as compared with that of CaO (Aldrich) sorbent. The Ca-based sorbent promoted with $\mathrm{Na}_2\mathrm{CO}_3$ (NaCaI) formed three phases such as CaCO_3 , $\mathrm{Na}_2\mathrm{Ca}(\mathrm{CO}_3)_2$ and $\mathrm{Na}_2\mathrm{Ca}_2(\mathrm{CO}_3)_3$ during CO_2 absorption with water vapor, unlike the CaO sorbent formed a CaCO_3 phase. In addition, KCaI sorbent formed three phases such as CaCO_3 , $\mathrm{K}_2\mathrm{Ca}(\mathrm{CO}_3)_2$ and $\mathrm{K}_2\mathrm{Ca}_2(\mathrm{CO}_3)_3$. From these results, it was known that the excellent CO_2 capture capacity of Ca-based sorbents promoted with alkali metals was due to new products such as $\mathrm{Na}_2\mathrm{Ca}(\mathrm{CO}_3)_2$, $\mathrm{Na}_2\mathrm{Ca}_2(\mathrm{CO}_3)_3$, $\mathrm{K}_2\mathrm{Ca}(\mathrm{CO}_3)_2$ and $\mathrm{K}_2\mathrm{Ca}_2(\mathrm{CO}_3)_3$. The new KCaI30 and NaCaI30 sorbents developed in this work could be used for CO2 capture at the high temperature.