전구체 용액의 농도 조절로부터 SO₂ 환원용 SnO₂ 촉매의 표면적 변화

<u>정철호</u>, 박노국, 이태진*, 백점인¹, 류청걸¹ 영남대학교; ¹한국전력연구원 (tilee@ynu.ac.kr*)

고온건식탈황공정은 탈황공정, 재생공정, 직접황회수공정(DSRP)의 세 가지 단위 공정을 포함하며, 고압의 SO_2 는 재생공정에서 직접황회수공정으로 공급된다. 따라서 본 연구에서 SO_2 의 촉매 환원을 위한 실험은 고압 하에서 수행되었으며, SnO_2 촉매의 활성이 조사되었다. SnO_2 촉매는 침전법으로 제조하였는데, 전구체는 tin chloride pentahydrate ($SnCl_4$ • $5H_2O$)가 사용되었으며, 전구체 용액의 농도는 $0.1 \sim 2.0$ M로 조절하였다. NH_4OH 용액의 첨가로 얻어진 침전물은 탈수한 후, 110 ℃에서 건조하여 얻고 600 ℃에서 4 h 동안 소성하여 DSRP용 촉매로 사용되었다. 본 연구에서 제조된 SnO_2 촉매의 활성 실험은 $200 \sim 400$ ℃, 20 atm에서 수행되었고, 환원 제로 CO가 사용되었다. SnO_2 촉매의 표면적은 전구체 용액의 농도를 제어함에 따라 변하였는데, 0.5 M 이하의 전구체 용액으로 제조된 SnO_2 의 표면적은 높은 농도로 제조된 촉매보다 비교적 높았다. 실험결과, 촉매의 활성은 표면적에 상당히 의존되는 것으로 확인되었다. 따라서 SnO_2 촉매의 제조를 위한 전구체 용액의 농도 제어는 매우 중요하다고 할 수 있다.