Studies on the Steam CO2 Reforming of Methane for GTL-FPSO Application

<u>이윤주</u>^{1,2}, 양은혁^{1,3}, 김승훈⁴, Mukesh^{1,3}, 조수현^{1,2}, 김상우^{1,3}, 홍석인², 문동주^{1,3,*} ¹KIST; ²고려대학교; ³UST; ⁴인하대학교 (djmoon@kist.re.kr*)

Steam CO_2 reforming (SCR) of methane for the production of syngas was investigated over Ni-based catalysts for GTL(Gas to Liquids) – FPSO (Floating Production Storage and Offloading) applications.

The Ni-based catalysts were prepared by impregnation and coprecipitation method. The catalysts before and after the reaction were characterized by N_2 physisorption, CO chemisorption, XRD, SEM and TEM techniques. The production of syngas by SCR with high pressure (10~25 bar) was simulated by PRO-II for GTL-FPSO applications.

In this work, the simulated results were compared with experimental results in a fixed bed reactor system by controlling the operation conditions of temperature, pressure and feed molar ratios. The catalytic performance was compared over the Ni-based catalyst with different Ni content and calcination conditions.