Pore-size effect in optimizing the photovoltaic performance of dye-sensitized solar cells (DSSCs) composed of mesoporous TiO₂ photoelectrodes

<u>원용선</u>^{1,2,*}, 윤태관³, 박성수², 김덕현², 황용경⁴, 허 성⁴, 배재영³ ¹부경대학교; ²삼성SDI(주); ³계명대학교 화학과; ⁴한국외국어대학교 화학과 (yswon@pknu.ac.kr*)

The mesoporous anatase ${\rm TiO}_2$ particles are synthesized using a soft template (1) of triblock copolymer and a hard template (2) of mesoporous ${\rm ZnO/Zn(OH)}_2$ -composite. Both materials produce a high BET surface area of more than 200 m²/g, favorable to a high dye uptake. However, their different pore sizes of 6.8 nm (1) and 3.0 nm (2) lead to different photovoltaic performances of DSSCs. While the ${\rm TiO}_2$ photoelectrode having larger pores gives a photo-conversion efficiency (${\rm n}$) of 6.71 %, the ${\rm TiO}_2$ photoelectrode having small pores provides only half the performance (3.05%). For reference, the photo-conversion efficiency is 5.62 % when using P25 ${\rm TiO}_2$ nanopowders. Mesoporous ${\rm TiO}_2$ with proper pore size (e.g. 6.8 nm) seems to make the most of its high surface area, thereby allowing a high uptake of dye to enhance the current density. On the other hand, the low efficiency of mesoporous ${\rm TiO}_2$ with too small pores (e.g. 3 nm) is probably attributed to the low uptake of dye due to the hindered diffusion and adsorption of dye molecule through the pore.