Characteristics and performance of Bi₂O₃ – doped ceria samaria composite electrolytes for intermediate temperature Solid Oxide Fuel Cells

Anh Cam Thieu^{1,2}, 윤성필¹, 김희수¹, 박상균¹, 한종희^{1,*}, 남석우¹ ¹한국과학기술연구원; ²과학기술연합대학원대학교 (ihan@kist.re.kr*)

Intermediate-temperature solid oxide fuel cells (ITSOFCs) have received much attention since their cost reduction, inexpensive materials and novel fabrication techniques. In this research, we developed a new kind of Bi_2O_3 – doped ceria samaria (Bi_2O_3 -SDC) composite electrolyte for the application of ITSOFCs. Bi_2O_3 has been chosen as sintering aid since its low melting point (~817°C) which acts as a sintering aid. Then my research focused on the characteristics and performance of Bi_2O_3 -SDC composite in various weight ratios (1%, 5%, 10%, 20%). Based on the porosity value, the composite with 20wt% of Bi_2O_3 is selected to continue the other experiments (porosity is less than 5%). The conductivity is measured under air condition and the maximum conductivity can get 0.024 Scm⁻¹ and 0.077 Scm⁻¹ at 600°C and 700°C, respectively. Single cells with the composite electrolyte are fabricated by cold-press method using NiO/SDC as anode and LSCF ($La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$) as cathode. The cell shows a maximum power density of 187 mWcm⁻², 272 mWcm⁻², 410 mWcm⁻² at 600°C, 650°C, 700°C, respectively.