In situ Preparation of Fe₃O₄-*graft*-Poly(acrylic acid) composite in Supercritical CO₂ and Its Adsorption Capacity of Water–Soluble Dyes

<u>Van Hoa Nguyen</u>, Yuvaraj Haldorai, Quang Long Pham, Tongqiang Zong, 심재진* School of Display and Chemical Engineering, Yeungnam University (jjshim@yu.ac.kr*)

Herein we report the synthesis of Fe_3O_4 -graft-poly(acrylic acid) nanocomposite via dispersion polymerization of acrylic acid in supercritical carbon dioxide in presence of surface modified magnetite nanoparticles. Firstly, Fe_3O_4 nanoparticles were surface modified with a silane-coupling agents namely 3-(trimethoxysilyl)propylmethacrylate. Secondly, polyacrylic acid (PAA) chains were successfully grafted from the surface of Fe_3O_4 , resulting in the formation of core-shell nanostructures. The obtained product was confirmed for chemical and physical structure using Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and transmission electron microscopy (TEM). The analysis results of magnetic property indicated that composites were superparamagnetic. The adsorption of some dyes onto PAA-coated magnetite nanoparticles was investigated in phosphate buffer (pH 2–10) at 25°C. It indicated that the adsorption capacity increased with the increased in solution pH and with the increased in Fe₃O₄ contents in composites.

화학공학의 이론과 응용 제16권 제2호 2010년