Electrical properties of ZnO nanowires based field effect transistors fabricated by topgate and back-gate approaches

박용규, Umar Ahmad¹, 김상훈¹, 김진석¹, 모하메드바즘¹, 한윤봉^{1,*} 전북대학교 나노반도체디스플레이학과; ¹전북대학교 반도체화학공학부 (ybhahn@chonbuk.ac.kr*)

A comparison between the electrical properties of ZnO nanowire based field effect transistors fabricated by top-gate and back-gate approaches has been presented in this paper. The field-effect transistors were fabricated by electron-beam lithography and photolithography process using ZnO nanowires grown by thermal evaporation process. The electrical properties of the fabricated ZnO nanowire based FETs were examined by Vds-Ids and Vgs-Ids measurements. A good contact between ZnO nanowires and Ti/Au metal electrodes was achieved for the fabricated FETs. It was observed that the peak transconductance for the back-gate based ZnO FETs was 92 ns. The field effect mobilities (µeff) for the top gated and back gated based ZnO nanowires FETs were 72 and 7.1 cm2/V-s, respectively. Our approaches present that the top-gate ZnO nanowires FETs have good electrical characteristics as compared to the back-gated ZnO nanowires FETs.