Synthesis of Ordered Mesoporous Molybdenum Dioxide using Nano-Replication Method

<u>공수성</u>, 손정국, 황성희, 김지만* 성균관대학교 (imankim@skku.edu*)

Transition metal oxides offer a variety of interesting properties such as catalytic, optic, electrochemical, magnetic and so on. Among the transition metal oxides, the molybdenum dioxide (MoO_2) have been used as catalyst in industry such as partial methanol oxidation with Fe or Ag for preparation formaldehyde, anode material of lithium-ion battery, isomerization of alkene materials, electrochromic materials.

Generally, the MoO₂ prepared by thermal evaporation and reduction of MoO₃ nano-particle which prepared by de-ionized water and a few drops of a binder. The synthesized MoO2 nanoparticle was low catalytic activation due to the extremely low surface area ($<5m^2/g$). Here, we reported the synthesis method of ordered mesoporous MoO₂ for improving the low surface area of the MoO₂. This as the nano-replication method used mesoporous silica as template with ordered porosity (2~3nm) and high surface area ($>800m^2/g$). The synthesized mesoporous MoO₂ proved to have high surface area($>100m^2/g$) and ordered porosity by the characterizations of powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscope (TEM) and N₂ adsorption.