Conceptual Design and Simulation for the Production of Hydrogen by WGS Reaction in Coal Gasification System

<u>의윤주</u>^{1,2}, 성대진¹, 이상득¹, 홍석인², 이종민³, 문동주^{1,*} ¹KIST; ²고려대학교; ³KEPRI (dimoon@kist.re.kr*)

One of the most abundant and readily available fuels is the coal and the strong case can be considered as the major world source of clean H² energy. There is a need in Coal Gasification systems to integrate complex unit operations including air separation units, gasifiers, gas separation and cleaning units, water gas shift reactors, pressure swing adsorption, to get pure H².

In this work, coal gasification simulation have been done using the most suitable coal, the Drayton, and PRO-II simulation program. It was assumed that the coal was fed by 10 ton/day. The operating conditions were tuning up at $1200\sim1500^{\circ}$ C, $15\sim30$ atm and feed molar ratio of C:H₂O:O₂ = 1:0.5~1:0.25~0.5. WGS reaction is applied to increase the concentration of hydrogen in the final product. Also, WGS reaction were carried out in catalytic packed-bed reactors. Catalysts can also be used over wider range of temperature and are also tolerant to S-impurities.