Drop Tube Furnace를 이용한 순산소 연소 배가스로 내탈황에서 석회석의 특성에 관한 연구

<u>이형근*</u>, 안영모, 박현희, 조항대, 최원길, 송영훈¹, 길상인¹ 한국에너지기술연구원; ¹한국기계연구원 (hklee@kier.re.kr*)

Effect of Limestone Characteristics on In-Furnace Desulphurization for Oxy-Fuel Combustion Flue Gas Using Drop-Tube Furnace

<u>Hyung Keun Lee</u>^{*}, Young Mo An, Hyun Hee Park, Hang Dea Jo, Won Kil Choi, Young Hoon Song¹, Sang In Keel¹ Korea Institute of Energy Research; ¹Korea Institute of Machinery & Materials (<u>hklee@kier.re.kr</u>*)

1. 서론

지구온난화의 주요인으로 부각된 CO₂ 회수기술 중의 하나인 순산소연소(Oxy-Fuel Combustion)는 산화용 공기대신 순도 95% 이상의 고농도 산소를 주입하여 연료를 연소시 키는 기술이다. 따라서 순산소연소를 통해서 발생하는 배가스의 대부분은 CO₂와 수증기로 구성되어 있으며, 발생된 배가스의 약 70~80%를 다시 연소실로 재순환시킴으로서 배가스 의 CO₂ 농도를 90% 이상으로 농축시킬 수 있다. 배출되는 배가스의 주성분 가운데 수증기 를 응축시킬 경우 95% 이상의 CO₂를 회수할 수 있다. 순산소연소에서 연료 중에 포함된 유 황화합물은 연소과정에서 황산화물로 전환되며, 공기를 이용하는 석탄연소 방식과 달리 순 산소연소에서는 배가스의 재순환으로 인해 비순환시보다 약 6배 이상의 높은 황산화물 농 도가 발생하게 된다. 이러한 고농도의 SO₂ 로 인해 연소가스 유입로와 CO₂ 수송 시스템에 서의 부식 가능성이 높으므로 순산소연소에서 배가스의 탈황이 필수적으로 요구되며, 탈황 방법은 연소로에 석회석을 주입하여 탈황하는 로내탈황과 배연탈황공정을 이용하는 후처리 탈황 기술이 있다[1-2].

기존의 로내탈황에 관한 연구는 유동층연소로를 중심으로 국내외에서 수행되었으며, 탈 황제로는 주로 석회석을 이용하였고 반응온도는 800~900℃ 정도였다. 그러나 순산소연소 의 연소조건은 이들과 달리 질소성분이 포함되지 않은 O₂/CO₂ 조건이고 반응온도는 기존의 연소보다 높다. 그리고 SO₂와 CO₂ 농도가 배가스의 재순환으로 인해 기존의 공기연소에 비 해 매우 높게 나타나기 때문에 새로운 탈황반응 메커니즘의 제시가 필요하고, 이러한 현상 을 규명하기 위해서는 실험을 통한 검증이 필요하다[3].

따라서 본 연구에서는 순산소연소 로내탈황조건을 모사한 Drop Tube Furnace 반응기를 이용하여 다양한 석회석의 특성이 순산소 연소조건에서 탈황효율에 미치는 효과를 분석하 기 위하여 국내산 석회석의 특성(조성, 결정형태)과 유입 SO₂ 농도, 반응 온도, 양론비(Ca/S ratio), 수분농도 등의 실험변수에 따른 SO₂ 제거효율 및 반응제와 생성물의 특성에 관한 영 향을 측정 분석하였다.

2. 실험

순산소연소 조건에서 건식탈황반응 특성 실험을 위한 실험 장치를 제작/설치하였다. 시

화학공학의 이론과 응용 제14권 제2호 2008년

스템의 주요 부분은 고온 건식 탈황반응이 이루어지는 Drop tube furnace(DTF)와 가스 공급장치, 석회석 공급장치, 반응물 포집 및 가스분석장치, Data acquisition 장치로 구성 되어있다. DTF 의 크기는 각각 가로 500 mm, 세로 500 mm, 그리고 높이 1200 mm로 제작 하였고, 내부에는 반응기 튜브(Reaction Tube)가 위치해 있으며, 내경과 길이는 각각 50 mm, 1200 mm이고 두께는 5 mm, 재질은 내열성을 지닌 고순도 Alumina이다. DTF는 3단 으로 구성되어 독립적으로 제어되는 SiC 발열체를 이용하여 가열이 이루어지며, 반응기 온 도는 혼합기체 유입부분, 반응기 내부 세 곳(가열온도 제어용) 총 4개 지점에서 측정 하였다.

흡수제로 사용된 분말 상태의 석회석을 반응기 내부로 공급하기 위하여 석회석 분말 공급 장치(화인테크닉스, Model: ROVO Feeder)를 이용하였으며, 공급장치에서 토출된 석회 석 분말은 운반가스(Carrier gas)를 이용하여 DTF 상부의 중심부분을 통하여 내부로 공 급된다. 운반가스는 반응가스의 주요 성분인 CO₂ 가스를 이용하였으며, 반응기 내부로 공급되는 석회석의 공급 속도는 석회석 공급장치의 회전속도에 따라 다르게 나타나므로 실험전에 공급장치를 Calibration 하여 사용하였다.

CO₂, O₂.와 SO₂ 가스를 MFC를 이용하여 실험 조건에 맞는 가스 농도를 설정하여 반 응기 내부로 공급하였고, CO₂, O₂와 SO₂ 각각의 기체는 Gas Mixing Zone에서 혼합되 고, 혼합된 기체는 가스 예열기를 거쳐 반응기 tube의 상부에서 석회석 분말 투입부 주 변을 통하여 유입된 후 층류화장치를 거쳐 최종적으로 반응기 내부로 유입된다. 실제 반 응기 내부로 들어가는 가스 유량을 연속적으로 확인하기 위하여 가스 유량계(Dry Test Gas Meter, Model: DC-2)를 이용하였다. CO₂, O₂와 SO₂ 가스의 농도는 가스 분석기 (Siemens, Model: Ultramat 23)를 이용하여 실시간으로 연속적으로 측정하였으며, Sample conditioner(우리환경기술, Model: We-GSC 4P)를 이용하여 반응기체의 수분 및 분진을 제거한 후 분석 장치로 보내었다.

SO₂ 가스와 흡수제인 석회석이 반응하여 생성된 입상물질들을 포집하기 위하여 입상물 질 포집장치를 고안하여 설치하였다. 포집장치 내부에는 Sintered metal filter가 설치되 어 있어 가스 분석시스템으로 입상물질의 유입을 차단하였다. DTF 내부에서 반응이 완 료된 입상물질은 포집장치의 하부에 부착된 포집병으로 낙하하여 포집된다.

3. 결과 및 토의

Table. 1에 본 연구에 사용된 석회석의 순도 및 화학성분을 나타내었다. 본 연구에서 사용 된 석회석은 광성, 청림 B, 우룡의 경우와 같이 95% 이상의 고품위 석회석과, 청림 A와 태영 의 경우와 같이 85% 이상의 저품위 석회석을 사용하여 실험을 수행하였다.

Fig. 1은 본 연구에 사용된 청림 B 석회석의 SEM 사진이다. (a)는 기본시료 표면의 SEM 사진이며 (b)는 1200 ℃에서 반응기 내부로 석회석을 주입 하여 sampling 한 시료로서 석회 석의 소성으로 인해 기공이 형성 되는 것을 볼 수 있다. (c)는 1200 ℃에서 석회석과 SO₂가 반응하여 생성된 입상물질로서 결정구조를 볼 수 있으며, (b)와 비교하여 기공에 SO₂가 흡 착되어 기공이 줄어든 것을 볼 수 있다.

Fig. 2는 Ca/S비와 SO₂ 농도가 SO₂ 제거효율에 미치는 영향을 나타낸 것으로서 반응 온도 1200 ℃, 광성화학 석회석을 사용하였다. 유입기체 유량은 10 L/min이었으며 O₂와 CO₂ 농도는 각각 20%, 80%이고 SO₂ 농도는 1800~3800 ppm이었고, Ca/S비를 1에서 4까지 변화시켜 실험을 수행하였다. 그림에서와 같이 동일한 농도에서 Ca/S비가 증가 할 수록 반응기 내부로 공급되는 석회석의 공급양이 증가하여 SO₂ 제거효율이 증가하였고, SO₂ 농도가 높을 경우에 SO₂ 제거효율이 증가하였는데, 이것은 동일한 양론비에서 SO₂ 농도가 높은 경우에 이용률의 상승효과에 의한 것으로 판단된다.

Fig. 3에 Ca/S비와 온도가 SO₂ 제거효율에 미치는 영향을 나타낸 것으로 반응온도는 1000 ℃, 1200 ℃이었으며 광성화학 석회석을 사용하였다. 유입기체 유량은 10 L/min,

화학공학의 이론과 응용 제14권 제2호 2008년

O₂와 CO₂ 농도는 각각 20%, 80%이고 SO₂ 농도는 1800 ppm이었고, Ca/S비를 1에서4 까지 변화 시키며 실험을 수행하였다. 그림에서 Ca/S비가 증가 할수록 SO₂ 제거효율은 각각의 조건에서 증가하였으며, 반응온도가 1000 ℃에서 1200 ℃로 증가 했을 때 각각 의 Ca/S 비가 2이상인 조건에서 6~10% 정도 SO₂ 제거효율이 증가하는 경향을 보였다. 이는 저온보다 고온의 조건에서 석회석 소성율의 증가로 인하여 SO₂ 제거효율이 증가하 는 것으로 판단된다.

Fig. 4는 유입가스 내 수분이 SO₂ 제거효율에 미치는 영향을 나나낸 것으로 반응온도 는 1200 ℃, 광성화학 석회석을 사용하였다. 유입기체 유량은 10 L/min, O₂와 CO₂ 농도 는 각각 20%, 80%이고 SO₂ 농도는 3800 ppm이었고, 수분을 10% 주입하였다. 유입가 스 내 수분이 존재 할 경우 SO₂ 제거효율은 약 6% 증가하는 것으로 나타났다. 이는 SO₂ 는 용해도가 큰 기체이므로 유입가스 내 수분이 존재하면 일차적으로 수분에 흡수된 후, 석회석과 반응을 하여 SO₂ 제거효율이 증가하게 된다[4].

Fig. 5에 Ca/S비와 석회석의 종류에 따른 SO₂ 제거효율을 나타내었다. 반응온도 1000 ℃에서 태영, 우룡, 청림 A와 청림 B 석회석을 흡수제로 사용하였다. 유입기체 유량은 10 L/min이었으며, O₂와 CO2 농도는 각각 20%, 80%이고 SO₂ 농도는 3000 ppm이었고, Ca/S비를 1에서 4까지 변화시켜 실험을 수행하였다. 그림에서와 같이 SO₂ 제거효율 은 품위가 가장 높은 청림 B 석회석이 가장 높게 나타났고, 품위가 낮은 태영 석회석이 가장 낮게 나타났다. 이러한 결과로 SO₂ 제거효율에 석회석의 품위가 영향을 미치는 것을 확인 할 수 있었다.

4. 참고문헌

- B.J.P Buhre, L.K. Elliott, C.D. Sheng, Progress in Energy and Combustion Science, 31, 285, 2005
- 2. 김종수, NICE, vol.25, No.5, 452, 2007
- 3. Hao Liu, Shiro Katagiri, Ken Okazaki, Energy&Fuel, 15, 404, 2001

4. 이형근, "Multi-Pollutants 동시제거용 hybrid APCD system 개발", 산업자원부 연구보고서, 56, 2002

성분 시료	품위 (%)	SiO ₂ (%)	Al ₂ O ₃ (%)	Fe ₂ O ₃ (%)	CaO (%)	MgO (%)	Ig-loss (%)
광성	99.5	0.09	0.12	0.04	55.70	0.26	42.50
태영	86.3	0.20	0.14	0.33	48.34	6.69	44.23
우룡	97.9	0.59	0.30	0.076	54.82	0.83	43.35
청림A	87.5	0.20	0.14	0.33	48.34	6.69	44.23
청림B	98.2	0.28	0.17	0.057	55.00	0.12	43.56

Table. 1. Chemical composition of limestone using this experiment

(a) 청림 기본시료(b) 청림B 1200 ℃(x10K)(c) 반응생성물(x10K)Fig. 1. SEM analysis of limestone using this experiment(Chung Lim B)

(%) Carlos Carlo

Fig. 3. Effect of Ca/S and reactor

on

 SO_2

removal

▲ Temp=1000℃
● Temp=1200℃

temperature

efficiency.

Fig. 4. Effect of water on SO_2 removal efficiency.

Fig. 5. Effect of Ca/S and absorbent species on SO₂ removal efficiency.