Effects of Carbon Coating on The Electrochemical Performance of Spinel-type $\text{Li}_4\text{Ti}_5\text{O}_{12}$ as an Anode Material for Lithium-ion Batteries

<u>지주빈</u>^{1,2}, 조병원^{2,*}, 변동진¹, 정경윤² ¹고려대학교 신소재공학부; ²KIST 이차전지연구센터 (bwcho@kist.re.kr*)

The lithium titanate spinel $Li_4Ti_5O_{12}$ is gaining more and more attention as anode materials for lithium secondary batteries. As the main feature of the compounds, spinel-type lithium titanate has their unique insertion-deinsertion mechanism that involves a two-phase process with the same symmetry. However, the low rate capability resulting from low electronic conductivity hindered the practical use of $Li_4Ti_5O_{12}$.

The effects of carbon coating on the electrochemical properties of spinel-type $Li_4Ti_5O_{12}/C$ were systematically investigated. The experimental results showed that these coating improved the reversible capacity and cycling stability over the pristine $Li_4Ti_5O_{12}$.

Phase purity of the synthesized materials was identified by the X-ray diffraction(XRD) and scanning electron microscopy(SEM). The charge and discharge capacities were measured with coin cells in which lithium metal foil was used as the counter electrode.