Effect of Mg/Al Ratio in Ni/MgO-Al₂O₃ on Combined Reforming of Methane

<u>구기영</u>, 노현석¹, 서유택¹, 서동주¹, 서용석¹, 윤왕래^{1,*}, 정진혁², 박승빈 한국과학기술원; ¹한국에너지기술연구원; ²경북대학교 (wlyoon@kier.re.kr*)

The control of adequate H_2/CO ratios in synthesis gas has been a key issue for application of oxo-synthesis and Fischer-Tropsch process by means of combined steam and carbon dioxide reforming of methane. In this study, H_2/CO ratio of 2 was achieved in combined reforming of methane over Ni/MgO-Al₂O₃. Ni catalysts supported on hydrotalcite-like MgO-Al₂O₃ have been used as promising catalysts because hydrotalcite-like MgO-Al₂O₃ have some advantages such as thermal stability, large surface area and well dispersion of metal catalyst (Ni). In this study, catalysts were prepared by an incipient wetness method and the Mg/Al ratio was varied from 0.5 to 3.5 in MgO-Al₂O₃ mixed oxide. The effect of Mg/Al ratio over Ni/MgO-Al₂O₃ catalysts pre-calcined at various temperatures from 800°C to 1200°C was investigated with respect to their characteristics and catalytic activity. The reaction was performed with the ratio of (H₂O+CO₂)/CH₄ of 1.2 from 750°C to 650°C to observe the effect of reforming temperature. It was concluded that Ni/MgO-Al₂O₃ catalyst with the Mg/Al ratio of 0.5 exhibited good catalytic activity and stability due to low coke formation and sintering.