과포화 수증기로부터 액적의 균일 핵생성

<u>김학금</u>* 서남대학교 환경화학공학과 (sukimhg@paran.com^{*})

Homogeneous nucleation of water droplets from supersaturated vapor

<u>Hag-Geum Kim</u>^{*} Department of Environmental & Chemical Engineering, Seonam University (sukimhg@paran.com^{*})

<u>서론</u>

물은 우리 생활에 있어서 매우 중요한 물질이다. 과포화 증기에서 핵을 생성하는 것은 균일 핵생성의 예 중 하나이다. 그동안 증기로부터 액적이 되는 단계에 있어서의 균일 핵생성 속도 실험이 많이 이루어졌다. 그러나 핵생성 속도 식은 기존의 CNT(classical nucleation theory)가¹⁾ 실험 데이터와 잘 일치 되지 않은 것으로 보고 되었다²⁾. 본 연구에 서는 보완된 핵생성 식을 이용하였고, 이 식에 물의 표면장력, 증기압, 밀도 등의 변수 값을 대입하여 핵생성 속도를 계산 하였다. 계산에 사용된 물의 증기압은 최근 발표된 2 종류의 증기압 식으로부터 구하였고, 밀도는 2종류의 밀도 식으로부터 구하였다. 계산 은 온도와 포화도에 따라 이루어 졌으며, 얻어진 결과는 실험에서 얻어진 문헌 데이터와 비교 검토하였다.

이론 및 고찰

1)속도 식 일정 핵생성 속도는 다음과 같다. $J = Kexp(-W^*/kT)$ (1)k; Boltzmann 상수, K; 속도인자, W*; 핵생성 일 위식을 속도론 적인 것을 고려하고 CNT에 의하여 나타내면 다음식이 되고 $J = K_0 S^2 exp(W_1/kT) exp(-W^*/kT)$ (2) $K_0 = v_e (2\sigma/\pi m_0)^{1/2} (P_e/kT)^2, S = P/P_e$ v_i ; 분자부피, m_0 ; 분자의 질량, P_i ; 증기압, S; 포화도, σ ; 표면장력. 병진-회전운동을 고려하면 다음식이 된다. $J = K_0 (S^2/n^{*4}) exp(W_1/kT) exp(-W^*/kT)$ (3) Girshick - Chiu의 자기-일관성 형으로 변화시키면 W1이 다음 식이 되고 $W_1 = -kT \ln S + (36\pi v_a^2)^{1/3} \sigma$ (4)Gibbs 식을 근사시키면 W^* , n^* 가 다음과 같이 된다.

화학공학의 이론과 응용 제13권 제1호 2007년

$$W^* = 16\pi\sigma^3/3 \triangle P^2, \quad n^* = 32\pi\sigma^3/3v_l \triangle P^3$$

$$\triangle P = P_l - P$$
(5)

기체를 이상기체로, 액체는 비압축성이라고 하면 $\triangle P = (kT/v_e) lnS$ 가 되고 속도 식은 다음과 같이 된다.

$$J = \frac{K_0}{16B^4} \exp\left(\frac{3\psi^{1/3}}{4^{1/3}}\right) \left(\frac{v_e \triangle P}{kT}\right)^{12} S \exp\left[-\psi\left(\frac{kT}{v_e \triangle P}\right)^2\right]$$
(6)
$$\psi = 16\pi v_e^2 \sigma^3 / 3 (kT)^3$$
$$\triangle P = (kT/v_e) (lnS)^m \text{o} \text{ z} \quad \text{근사시키면 식은 다음과 같다. 여기서 m은 1.0843 orb.}$$

$$J = \frac{K_0}{16\psi^4} \exp\left(\frac{3\psi^{1/3}}{4^{1/3}}\right) (\ln S)^{12m} S \exp\left[-\frac{\psi}{(\ln S)^{2m}}\right]$$
(7)

2) CNT
CNT형태는 다음과 같다¹⁾.

$$J = K_0 S^2 exp [-\psi/(lnS)^2]$$
 (8)
핵생성 일과 핵에 포함된 분자의 수는 다음과 같다.
 $W^* = 16\pi v_e^2 \sigma^3/3 (kT lnS)^2$ (9)
 $n^* = 32\pi v_e^2 \sigma^3/3 (kT lnS)^3$

3)사용된 반 경험식⁵⁾

$$J = K_0 S^2 exp[-\psi/(\ln S)^2] exp(a_1 + a_2/T)$$

$$a_1 = -27.56, \quad a_2 = 6500$$
(10)

4)Girshick-Chiu식²⁾

$$J_{GC} = \frac{exp\{\theta\}}{S} J_{CNT}, \qquad \theta = \frac{(36\pi)^{1/3} v_m^{2/3} \sigma}{kT}$$
(11)

4) 물성 값을 나타내는 식
본 계산에 사용된 물의 표면 장력 식³은 다음과 같다.
σ(mJ/m²) = 85.2 − 0.354236T+3.50835×10⁻³T² − 8.71691×10⁻⁶T³ (12)

다음 계산온도 구간에서 사용된 액체물의 밀도는 비교를 위하여 다음 2종류의 식^{5, 6)}을 사용 하였다. $ho(g/cm^3) = 0.08tanh(x) + 0.7415t_r^{0.33} + 0.32$ (13) x = (T - 225)/46.2 $t_r = (T_c - T)/T_c$

 $\rho(g/cm^3) = [999.84 + 0.086 (T - 273.15) - 0.0108 (T - 273.15)^2] \cdot 10^{-3} \quad (14)$

물의 증기압은 최근의 Murphy - Koop 식⁷⁾과 WMO에서 추천한 식^{4, 8)}을 사용 하였으 며 식들은 다음과 같다.

화학공학의 이론과 응용 제13권 제1호 2007년

$$\begin{split} \log P_e &= 54.842763 - 6763.22/T - 4.21 \log T + 0.000367\,T + tanh\{0.0415 \\ (T-218.8)\} \left(53.878 - 1331.22/T - 9.44523 \log T + 0.014025\,T \right) \end{split} \tag{15}$$

$$\begin{split} log_{10}P_{e} &= 10.79574 \left(1 - 273.16/T\right) - 5.02800 log_{10} \left(T/273.16\right) \\ &+ 1.50475 \quad 10^{-4} \left(1 - 10^{\left(-8.2969^{*}\left(T/273.16-1\right)\right)}\right) \\ &+ 0.42873 \quad 10^{-3} \left(10^{\left(4.76955\left(1-273.16/T\right)\right)} - 1\right) + 0.78614 \end{split} \tag{16}$$

4)고찰

위 식들을 컴퓨터로 프로그램화 하여 계산 하였다. 계산되어 얻어진 결과 중 Fig. 1.은 포화도와 온도에 따른 CNT와 보완된 속도식의 핵생성 속도를 보여주고 있다. 그림에서 전체 온도 구간에서 CNT와 보완된 속도식의 계산결과는 차이가 많이 났으며, 보완된 속 도식의 결과가 더 큰 값을 보여주고 있다. 다음 문헌 데이터와 여러 핵생성 속도식간의 비교를 Fig. 2.에 나타내었다. 여기서 데이터와 보완된 속도식, Girshick-Chiu식은 잘 일 치됨을 보이고 있으며, 반 경험식과 CNT는 상당한 차이를 보여 주었다. CNT계산값은 데이터와 큰 차이를 보여 주었다. 계산에 사용된 밀도 식과 증기압 식을 달리 하여 핵생 성 속도 차이를 알아보았다. 증기압 식을 달리 하였을 때의 차이는 계산 온도 구간에 있 어서 미미 하였다. 그러나 밀도 식을 달리하면 Fig. 3.과 같이 차이를 보여 주었다. 온 도가 낮을수록 포화도가 클수록 핵생성 속도의 차이가 많이 났다.

결론

수증기 상에서 액적을 형성하는 균일 핵생성에 있어서 핵생성 속도를 물의 밀도, 표면장 력, 증기압 등의 식으로부터 얻어진 데이터를 이용하여 계산하였다. 계산치를 실험데이터 와 비교 한 결과, 계산에 사용된 증기압 식을 달리 하였을 때 200K에서 290K사이에서 는 핵생성 속도의 차이가 별로 없었다. 물의 밀도 식을 달리 하였을 때는 핵생성 속도의 차이는 있었는데, 200K로 온도가 낮을수록 핵생성 속도 차이가 많았다. 220K에서 보완 된 속도식과 여러 속도 식을 문헌데이터와 비교하였는데, 병진-회전에너지 등을 고려하 여 얻어진 보완된 식과 Grishick-Chiu식은 문헌 데이터와 잘 일치 하였고, CNT 식은 실 험치보다 작은 값을 나타내었다.

참고문헌

- 1. R. Becker and W. Döring, Ann. Phys. 24, 719(1935).
- 2. S.L. Girshick, C.P. Chew, J. Chem. Phys. 93, 1273(1990).
- 3. M. A. Floriano and C.A. Angell, J. Chem. Phys. 94, 4199(1990).
- 4. J.A., Goff, Transactions of the American Society of Heating and Ventilating Engineers 347(1957).
- 5. J. Wölk and R. Strey, J. Phys. Chem. B 105, 11683(2001).
- 6. H.R. Pruppacher and J.D. Klett, "Microphysics of Clouds and Precipitation", Reidel, Dordrecht, Holland.
- 7. D. M. Murphy and T. Koop, Quart. J. Royal Met. Soc, 131, 1539(2005).
- 8. World Meteorological Organization, WMO technical Regulations, Appendix A, WMO-No. 49, August(2000).

664

Fig. 1. A comparison of nucleation rates predicted by the new theory and by the classical theory at T=220K, 230K, 240K

(as indicated) ; solid curve-new theory, dashed curve -classical theory.

Fig. 2. Supersaturation dependence of nucleation rate of H_2O droplets at T=220K(as indicated); square -experimental data of Wöllk and Strey ; solid curve Eq.(7), dashed curve Eq.(10), dotted curve Eq.(8), dot dashed curve Eq. (11).

Fig. 3. A comparison of nucleation rates predicted by the new theory at T=210K, 220K, 250K

(as indicated) ; solid curve-water density Eq. (13), dashed curve- water density Eq. (14).

665