Enzymatic Decolorization of Acid Blue 350

<u>이준학</u>^{1,2}, 박철환³, 이도훈¹, 김승욱², 김상용^{1,*} ¹한국생산기술연구원 청정공정팀; ²고려대학교 화공생명공학과; ³광운대학교 화학공학과 (sykim@kitech.re.kr*)

The conventional biological wastewater treatment systems are inefficient in treating dye wastewater because of the low biodegradability of dyes. The fungal strain *Funalia trogii* produces a group of lignolytic enzymes, lignin peroxidase, manganese peroxidase and laccase. In this study, to maximize the production of laccase by F. *trogii*, six inducers were tested for their ability to enhance enzyme production. Among them, CuSO₄ was found to be the most effective. Under the optimized conditions (0.5 mM CuSO₄ added at 24 hr after innoculation), the maximal laccase concentration was 22.8 U/mL. After purification, free and immobilized laccases were used to degrade Acid blue 350.