DBD을 이용한 CH_4 의 CO_2 개질반응에서 반응기 스케일 업에 따른 반응특성

<u>조근식</u>^{1,2}, 문 일², 최재욱¹, 이화웅¹, 송형근^{1,*} ¹한국과학기술연구원; ²연세대학교 (hksong@kist.re.kr*)

저온 플라즈마를 이용한 DBD (Dielectric-Barrier Discharge) 반응기에서 $\mathrm{CH_4}$ 의 $\mathrm{CO_2}$ 개질반응의 반응기 스케일 업에 관한 최적화 연구를 수행하였다. 플라즈마 반응기는 실린더형태의 석영 재질이다. 이 반응기 외부전극은 외벽 면에 Ag로 도금 후 850℃의 온도로 소성시켜서 만들었고, 내부 전극으로는 스프링 코일을 사용하였다. 반응기 크기별 ($6\times8\times340\mathrm{mm}$, $7\times9\times340\mathrm{mm}$, $8\times10\times340\mathrm{mm}$, $10\times12\times340\mathrm{mm}$, $11\times13\times340\mathrm{mm}$, $13\times15\times340\mathrm{mm}$) 스프링 코일(\emptyset =4 mm , 5 mm , 6 mm)과 반응기 사이 간격이 다른 조건에서 실험을 하였다. 그리고 반응기 외부 전극과 내부 전극 간 간격을 일정하게 유지하기 위해서 pyrex tube를 중앙에 고정시켰다. 유전체 방전을 이용하여 $\mathrm{CH_4}$ 의 $\mathrm{CO_2}$ 개질반응으로 생성된 물질로는 대부분 합성가스이며 미량의 탄화수소류($\mathrm{C2}\sim\mathrm{C4}$)를 포함하고 있다. 각 반응기별 소비되는 전력은 오실로스코프로 전송받은 데이터를 계산하여 반응기에 따른 효율을 살펴보았고, 이를 통하여 $\mathrm{CH_4}$ 과 $\mathrm{CO_2}$ 의 전화율과 탄화수소류의 선택도가 높은 최적의 전극 간 거리를 알 수 있었다.