Photocatalytic docomposition of water-methanol solution over Pt/KNaNbTeO₆ under visible light irradiation (λ >400 nm)

<u>김현규</u>^{1,*}, 정의덕¹, 김해진², 홍태은¹, 박혁규^{1,3}, 지상민⁴, 배상원⁴, 홍석준⁴, 장점석⁴, 이재성⁴ ¹한국기초과학지원연구원 부산센터; ²한국기초과학지원연구원 미래융합연구실; ³부산대학교 물리학과; ⁴포항공과대학교 화학공학과 (hhgkim@kbsi.re.kr*)

Most of the applications have focused on TiO_2 , which shows high activity and long-term stability, and is inexpensive. However, TiO_2 is active only under UV light due to its wide band-gap energy of ca. 3.2 eV. Since, the fraction of UV in solar spectrum is less than 5%, TiO_2 photocatalysis cannot efficiently exploit the abundant natural resource i.e. solar radiation which dominantly consists of visible light. In order to utilize the main part of solar spectrum, and even for indoor applications under weak interior lighting, photocatalysts absorbing visible light are required. Here we describe single-phase oxide photocatalyst, KNaNbTeO₆, cubic crystalline phase, which is an efficient photocatalyst for isopropyl alcohol degradation to CO_2 , and decomposition of watermethanol solution into H₂ or O₂, all under visible light.