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Introduction
In the process control, more than 95% of the control loops are of the proportional integral derivative (PID) type. 
The main reason is its relatively simple structure, which can be easily understood and implemented in practice. It 
is well-known that control system design for an open-loop unstable process is more difficult than that for a stable 
one because of the unstable nature of the dynamics, for which most design tools cannot be applied. The some of 
the common example for unstable process are the polymerization furnaces, continuous stirred tank reactors 
(CSTRs), and the batch chemical reactor, which has a strong nonlinearity due to heat generation term in the 
energy balance. A very recent trend shows that tuning of controllers for a time-delay unstable process has been 
an active area of research in the literature [1-9]. Due to the effectiveness of internal model control (IMC) in 
process industry, many efforts have been made to exploit the IMC principle to design the equivalent feedback 
controllers for unstable processes. Wang et al. [7] studied and concluded that that the most of the controller 
schemes is not working for a large normalized dead time 1θ τ > and the tuning method of Lee et al. [2] and Yang 
et al. [9] is only applicable. Recently, Xiang and Nguyen [8] have suggested a control schemes for unstable with 
dead time by PID controller, the method contain three controllers.  
Therefore, the proposed study is concerned for the dead time dominant unstable processes. The IMC filter has 
been modified from critically damped to underdamped and damping coefficient can be adjusted for the required 
integral action for improved performance. The dead time dominant first order delay unstable and second order 
delay unstably process has been studied for the superiority of the proposed method. The robustness of the 
controller is evaluated using Kharitonov’s theorem. 
Theory 
The IMC has been shown to be a powerful method for control system synthesis [5]. However, for unstable 
processes the IMC structure cannot be implemented exactly similar to stable process, since any input will make 
output grow without bound if process is unstable. Nevertheless, as discussed in [5], we could still use IMC 
approach to design a controller for an unstable process, if only the following conditions are satisfied for the 
internal stability of the closed-loop system (i) q  stable, (ii) 

pG q stable, (iii) ( )1 p pG q G−   stable. 

IMC controller design step 
The IMC controller design involves two steps:  
Step 1: A process model 

PG% is factored into invertible and non invertible parts   

P M AG P P=% , where 
MP  is the portion of the model inverted by the controller; 

AP  is the portion of the model not 
inverted by the controller (it is usually a non-minimum phase and contains dead times and/or right half plane 
zeros); ( )0 1AP = . 
Step 2: The IMC controller is set as 1

Mq P f−= . Here, q  has zeros at 
1,  ..., kup up  because 1

MP −  is the inverse of the 
model portion with unstable poles. The filter for the IMC controller can be designed to satisfy two criteria, one is 
that to make the IMC controller proper and another to cancel the unstable poles or stable poles near zero of GD. 
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iβ  are determine to cancel the unstable poles of GD and m is the number 

which can be adjusted to make the IMC controller proper. It has function a of adjustable time constant λ  and 
damping coefficient ξ . 
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The lead term in IMC filter ( )1
1m i

ii
sβ

=
+∑  causes an overshoot in the closed-loop response to a setpoint change. 

This problem can be resolved if we add a setpoint filter. ( )1
1 1m i

R ii
f sβ

=
= +∑ The resulting IMC controller in Eq. (1) 

has stable response and the classical feedback controller exactly equivalent to IMC can be obtained from the 
following relationship  
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The resulting closed-loop output response in Eq. (2) is physically realizable, but it does not have the standard 
PID controller form. For the PID controller from the ideal controller Gc, is discussed in detailed Lee et al. [3].  
Proposed Tuning Rule 
First Order Delayed Unstable Process (FODUP) 
Consider a first order delayed unstable process of the form: 

1

s

P D
KeG G

s

θ

τ

−

= =
−

                                                                                                                                           (3) 

where K is the gain, τ is the time constant and θ is the time delay. The proposed IMC filter is found 
as ( ) ( )2 21 2 1f s s sβ λ λξ= + + + . Then, the resulting IMC controller becomes ( )( ) ( )2 21 1 2 1q s s K s sτ β λ λξ= − + + + . Therefore, the ideal 

feedback controller equivalent to the IMC controller is ( ) ( ) ( ) ( )2 21 1 2 1 1s
cG s s K s s e sθτ β λ λξ β− = − + + + − + 

. The dead time term 

expanded in Maclaurin series and the analytical PID formula can be given as:                     
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  The extra degree of freedom β is calculated 

by solving [1-Gq]|s=1/τ. That means we want to choose β so that the term [1-Gq] has a zero at the pole of GD. The 
value of β after some simplification is given as ( )2 2 22 1eθ τβ τ λ λξτ τ τ = + + − 

. 

Robust Stability  
Parametric Robustness Analysis 
A control system is said to be robust if the closed-loop system is stable even when the model parameters of the 
actual process are different from that used for controller design. This section is devoted for the robust stability of 
interval polynomials based on the Kharitonov’s Theorem, which is discussed in Bhattacharyya et al. [1]. 
Theorem (Kharitonov’s Theorem): 
Every polynomial in the family ( )sχ  is Hurwitz if and only if the following four polynomials are Hurwitz: 

( )
( )
( )
( )

2 3 4 5 6
1 0 1 2 3 4 5 6

2 3 4 5 6
2 0 1 2 3 4 5 6

2 3 4 5 6
3 0 1 2 3 4 5 6

2 3
4 0 1 2 3 4

...                     

...                     

...                     

k s s s s s s s

k s s s s s s s

k s s s s s s s

k s s s s

χ χ χ χ χ χ χ

χ χ χ χ χ χ χ

χ χ χ χ χ χ χ

χ χ χ χ χ

= + + + + + +

= + + + + + +

= + + + + + +

= + + + + 4 5 6
5 6 ...                     s s sχ χ+ +

                                             

The stability of above four equations formed from Kharitonov polynomials is to be checked. For fixed values of 
gain K and τ, a perturbation in time delay θ i.e., (θ-∆θ) ≤θ ≤ (θ-∆θ) is substituted in the above coefficient and 
Kharitonov’s four equations are checked for stability using Routh-Hurwitz method. Similarly perturbation in K  
and τ is also evaluated. The closed-loop characteristic equation (1+GOL=0) can be arrange in form of polynomial 
after the dead time can be approximated by Pade approximation as: 

( ) 2 3 4 5 6
0 1 2 3 4 5 6s s s s s s sχ χ χ χ χ χ χ χ= + + + + + +                                                                                                         (9)      

i i iχ χ χ≤ ≤  ( )0,  1,  2,  3,  4,  5i =  where 
iχ  and 

iχ  are the lower and upper bound for 
iχ , respectively. Let’s consider the 

control system design of FODUP process by the PID controller, where 1 0OLG+ =  is given as 

( ) ( ){ }21 1 1 0s
C I I D Ik K s s e s sθτ τ τ τ τ−   + + − + =  

.  The coefficient of the characteristic equation, Eq. (9), for the FODUP is 

given as: 
0 120 Ck Kχ = , 

1 120 60 120I C C Ik K k Kχ τ θ τ= − − + , 2
2 12 60 120 60 120C C I C I D I Ik K k K k Kχ θ τ θ τ τ τ θ τ τ= − + − +  

3 2 2
3 12 60 12 60C C I C I D I Ik K k K k Kχ θ τ θ τ τ θ τ θ τ τθ= − + − − +  ,  3 2 3 2

4 12 12I I C I C I Dk K k Kχ τ θ τ τθ τ θ τ τ θ= − + − +  ,   
3 3

5 I C I Dk Kχ τ τθ τ τ θ= −                                                       

Simulation Study 
Example 1. FODUP  
Consider a large normalized dead time θ/τ=1.5 unstable process Wang et al. [7] and Xiang and Nguyen [8]. 

( )
1.51

1 1

s

P D
eG G
s

−

= =
−

                                                                                                                                          (10) 

The λ and ξ value for the proposed tuning method has been adjusted to give the same Ms value to Wang et al. [7] 
and Lee et al [2]. The selection of same Ms has been done for fair comparison. Xiang and Nguyen [8] method 
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controller setting, which has three controller structure is, ( ) ( )1 5 1F s s= + as a setpoint filter, inner loop PD 
controller ( ) ( )1 1.019 0.59C s s= +  and outer loop PID controller ( ) ( )2 0.008 0.0054 0.0729C s s s= + + . To test the performance of the 
control system, the load disturbance has a step change of magnitude 0.1 and setpoint of magnitude of 1 is added. 
Fig. 1 and Fig. 2 show the output response of the disturbance rejection and setpoint respectively. The proposed 
method shows the clear advantage in disturbance rejection and the setpoint response. Lee et al. [2] and Wang et 
al. [9] methods shows very slow setpoint and disturbance rejection.  
The robustness of the controller is evaluated by using the Kharitonov’s Theorem and the parametric uncertainty 
margin in different process parameters for different controller methods is listed in Table 1. From the Table 1, it is 
clear that almost equal robustness the proposed method has great advantage in the performance.  
Example 2. SODUP 
Consider the following unstable process studied by Yang et al. [9] and Liu et al. [4]. 

( )( )
1.21

1 1 0.5 1

s

P D
eG G

s s

−

= =
− +

                                                                                                                             (11) 

The above dead time dominated SODUP can be modeled as ( )( )0.61 1 1 1.1 1s
P DG G e s s−= = − +  in the present study. This is 

due to getting the required integral action. To derive these approximations, consider the following Taylor series 
approximations of a time delay transfer function, ( )1 1 1s se e sθ θ θ− = ≈ + . To test the performance of the control system, 
the load disturbance has a step change of magnitude 0.05 and setpoint of magnitude 1 is added and the 
simulation results are provided in Fig. 3 and Fig. 4 respectively. It is seen that the proposed controller leads to 
obviously improved load disturbance performance. The robustness of the controller is evaluated by using the 
Kharitonov’s Theorem and the uncertainty margin in different process parameters is listed in Table 2. It is clear 
that proposed methods have good advantage in performance for almost equal robustness level.  
Conclusions 
The present study deals with the dead time dominant unstable process for the FODUP and SODUP. The control 
performance has been improved by modifying the filter in IMC design from critically damped to underdamped. 
In the unstable process, as the process going towards the dead time; it has lacking the integral action, which can 
be improved by modifying the IMC filter. The detail robustness study has been done for the parametric 
robustness based on the Kharitonov’s Theorem, which clearly show that for almost equal uncertainty margin in 
process parameters the proposed method have great advantage in the performance.  

     
 
 
 

Tuning 
Methods 

Present 
Method 

 

 Lee et al. Wang et 
al. 

K  ± 0.037 ± 0.036 ± 0.036 
τ  ± 0.056 ± 0.055 ± 0.055 
θ  ± 0.080 ± 0.086 ± 0.086 

Tuning 
Methods

Present 
Method 

 

Liu et 
al. 

Yang et 
al. 

K  ± 0.030 ± 0.030 ± 0.005 

1τ  ± 0.045 ± 0.049 ± 0.096 

2τ  ± 0.060 ± 0.063 ± 0.128 

θ  ± 0.055 ± 0.066 ± 0.131 
Table1 Uncertainty in process parameters for example 1

Table 2 Uncertainty in process parameters for example 2
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Fig. 3 Disturbance rejection for example 2 Fig. 4 Setpoint response for example 2 

Fig. 1 Disturbance rejection for example 1 Fig. 2 Setpoint response for example 1 


