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l. INTRODUCTION

In part 1 of this series[Kim et al. 2005] a statistical thermo-dynamical model

was derived for explaining the heat capacity of metals at constant volume as a function
of the temperatures by multiplying the binomial equations by the energy levels. The
member of a set making a harmonic vibration are an electron, its proton and its
neutron. And it is stressed that the number of the energy levels composed of metals is
five. In the derivation of the heat capacity equation the only two excitation energies, the

excitation energy of the lowest energy level, D, and the excitation energy of the

higher energy levels, D, are used. In the similar way by using non-binomial theory the
same types of the heat capacity equations are derived.

As a further test, the model was applied to more metals as possible. The line
spectra are looked over and the atomic models are figured out. During counting the line

spectra of lithium metal, we could figure out the atomic models of %Li and ng’ in

order to make their metals. Hence the explanation about the atomic model of a metal in
Fig. 1 of the reference[Kim et al. 2005] is embodied. And Plank’s constant of lithium

and boron metals are calculated and the quantum numbers are explained.

[I. STATISTICAL MODELING
a. By multiplying binomial equations
The heat capacity equation of the lowest energy level of a metal at the constant
volume by multiplying the binomial equations by energy levels is obtained as follows
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In Eq. (1) R is the universal gas constant and in Eq. (1)-1 ¥, the rotational(decay

(1-3-1

constant) energy of the lowest energy level and W, the rotational(decay constant)
energy of the higher energy levels. And in the above equations f, is Boltzmann
constant, T the saturation temperature and 7 the temperature of the sample metal.
And more in Eqg. (1)-3-1 ¢y Which is obtained at 7T, is called the saturation
temperature factor.

So we apply the heat capacity equations of the more higher energy level isotherms.

For the higher energy level isotherms we derive the following equations
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Since irrespective of the energy levels each excited quantum set is furnished with the
same amount of energy(the same temperature), the total quantum excitation(internal)

energy, [J, of all excited sets becomes

DyN N
U= jﬁf +D,(N— %L Y=u N (3)

In Eq. (15) u, 1is the average quantum excitation energy of a set and s the
degeneracy of the sets. It is considered that there is no additivity according to the

energy levels in the heat capacity. C,, Cps Cp and etc. are the multiplicative
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thermodynamic probability functions of levels 1, 2 and 3. And so we take the geometric
mean heat capacities of the above two - five equations according to the energy levels

of the same kind of the sets of the metal. So here they become
Cu=V CyCp @ Cp= VCyCpCy B Cy= "W CyCpCsCy ©®
CU4: SVCHCQCBCMCB (7) Cv5: 5\/ CZICIZCBCMCISCLG (8)

b. By using non-binomial equations

As we explained in the previous paper[Kim et ad., 2005], Eq. (1) could not be
fitted to the experimental heat capacity data at all since it draw Langmuir type line for
itself. But if we omit the effect of non-excited probability functions of
1 — Wyexp(—Dy/kgT,) and 1— W,exp(—D,/ksT,) as we did with similar method in
the reference[Kim, 2000], then the derived heat capacity equation of the lowest energy
level draws the sigmoid line which can be fitted to the experimental heat capacity in a
certain extent, even if it is incomplete mathematically. This derivation is helpful in
explaining the continuum theory. Hence the heat capacity equation of the lowest energy

level at the constant volume becomes

3]?(410—(L + Zogo)
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In Eq. (9)-3 ¢ is the additional subtraction energy in zth level. So we apply the heat

capacity equations of the more higher energy level isotherms. For the higher energy

level isotherms we derive the following equations

R0n &)
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where
2= g (10)-1

And so we take the geometric mean heat capacities of the above two and three
equations according to the energy levels of the same kind of the sets of the metal. So

here they become

Cp=V CpCpy  (12) Cuo= "V CpCpCpy (13)
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II. RESULTS AND DISCUSSION

The semi-experimental heat capacity data of metal at the constant volume are fitted

to the multiplication binomial equations much better than the non-binomial equation.

We may predict the propagating direction of the photon as cosa®+ cos 82+ cos 7> =1.

V. CONCLUSION

The most promising heat capacity equation at the constant volume among the

above derived equations is C,= 5\/ CpCpCpyCyCps- In order to meat this equation we

suggest that the four energy levels are «<«, —&, «= and —=. And we had
better agree the existence of a core set composed of free neutrons, if we do not have
the other way to approve the five energy levels, such as by accepting the existence of
some another atomic model, quarklike model etc. The number of the diagonal energy
levels which go toward 4 or 5 grossly show the smallest standard error. We think that
the empirical equation, C ,—C,=AT sz , the Dulong-Petit law, the experimental heat
capacity data at the constant pressure and the above derived equations make the good
combination and are promising. 1. £, is defined as the specific heat of an average level
of the metal atom in one dimension. The members of a level become sets. The
members of a set of a harmonic oscillation are an electron, its proton and its neutron.

2. The number of the energy levels of each experimented metal is 4 and they represent
the sets of an inward electron spin with its outward proton(+neutron) spin( —&),
an inward electron spin with its inward proton(+neutron) spin(—=), an outward
electron spin with its outward proton(+neutron) spin(«<«) and an outward electron
spin with its inward proton(+neutron) spin(«=). Each thermal energy level has the
same number of the sets of harmonic oscillators. 3. We can clarify the difference of

ng' and its isotope ?),Li by the spin alignments of the sets, 4. We can count the

number of the line spectra of atoms by the spin alignments of sets or their
interferences. Then we can discern metals, non-metal and semi-metal. Hund's rule is

not applied in our study.
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