Sulfur Trioxide Decomposition using the Fe Catalysts in IS Cycle for the Thermochemical Hydrogen Production

<u>김태호</u>^{1,2}, 공경택², 이병권², 정광덕^{2,*}, 김홍곤², 이관영¹ ¹고려대학교; ²한국과학기술연구원 (jkdcat@kist.re.kr*)

Iodine–Sulfur (IS) thermochemical process has been focused as a hydrogen production process. IS process is the continuous and closed cycle system consisting of three chemical step reactions; i) Bunsen reaction (I₂ + SO₂ + 2H₂O = 2HI + H₂SO₄; 293–373 K), ii) HI decomposition (2HI = H₂ + I₂; 473–973 K), iii) H₂SO₄ decomposition (H₂SO₄ = H₂O + SO₃ \rightarrow H₂SO₄ = H₂O + SO₂ + 0.5O₂; 1073–1173K).

Among the step reactions, SO₃ decomposition is a catalytic reaction to convert SO₃ into SO₂ and O₂ using the heat from VHTR (very high temperature gas-cooled reactor) in IS (Iodine-Sulfur) cycle. In this work, we prepared Fe supported on Al₂O₃ catalyst in this reaction. The molar ratio of Fe catalysts to Al₂O₃ was 0.25, 0.5, 0.75, 1.0. Catalytic reaction was performed in the temperature range of 750–950°C changing the partial pressure and GHSV of the SO₃ in a fixed bed reactor.