<u>김용관</u>, 박성준, 구재필, 오동진¹, 김규태¹, 하정숙* 고려대학교 화공생명공학과; ¹고려대학교 전기공학과 (jeongsha@korea.ac.kr*)

We have transferred V_2O_5 nanowires to a desired position on a SiO₂ substrate by a μ -contact printing (MCP) technique. In MCP procedure on the aminopropyltriethoxysilane (APS) – treated SiO₂ substrate, we showed that the hydrophilicity of PDMS stamp affects the transfer mechanism of nanowires. The V_2O_5 nanowires were transferred through a relief side of the hydrophilic stamp whereas they were along the recess edge of the hydrophobic one forming agglomerated nanowire patterns because V_2O_5 nanowires do not adhere on the relief sides but are stored in the recess region of the hydrophobic stamp. The width of the transferred pattern could be controlled by the concentration of nanowire solution as well the width of the recess area in the patterned stamp. In this way, we could obtain the reduced line pattern of sub-micrometers compared to the PDMS stamp patterns of a few micrometer sizes. These results suggest that the transfer mechanism of V_2O_5 nanowires on SiO₂ substrate be related to chemical interaction between the stamp and the ink.