Visible Light Induced Degradation of Recalcitrant Pollutants Using Modified ${ m TiO_2}$ Photocatalysts

<u>최원용*</u>, 배은영, 김순현, 경현숙 포항공과대학교 환경공학부 (wchoi@postech.ac.kr*)

Dye-sensitized ${\rm TiO_2}$ and platinum ion-doped ${\rm TiO_2}$ photocatalysts were synthesized and their physicochemical characteristics and visible light reactivities were investigated. When ruthenium complexes were used as a sensitizer of ${\rm TiO_2}$, the visible light induced degradation of perchlorocompounds could be achieved through a reductive path. However, the sensitized ${\rm TiO_2}$ is not stable enough to be a practical photocatalyst. In a related sensitized ${\rm TiO_2}$ system, a simultaneous removal of dyes and heavy metal ions was observed in visible light illuminated ${\rm TiO_2}$ suspensions and the removal rate of each component was synergistically enhanced. The electron injection from an excited dye into the conduction band of ${\rm TiO_2}$ and the subsequent reduction of metal ions on ${\rm TiO_2}$ take place concurrently to exhibit a novel synergic effect. This model system of ternary components (dye/ ${\rm TiO_2}$ /metal ion) can be a basis of solar remediation technology for dye-contaminated wastewaters. On the other hand, platinum ion doped ${\rm TiO_2}$ as a visible light photocatalyst was synthesized and characterized to demonstrate its successful performance in degrading recalcitrant organic pollutants.