The activity of Water-gas-shift reaction over CuO-ZrO2 catalyst

<u>고정봉</u>, 이진경, 김동현* 경북대학교 화학공학과 (dhkim@knu.ac.kr*)

The activity of CuO–ZrO₂ catalysts for water gas shift reaction (WGSR) was studied. All the catalysts with different CuO–ZrO₂ atomic ratios used in this study were prepared by coprecipitation method. The optimum composition for high WGSR activity was 50at.%CuO–ZrO₂ catalyst. Its catalytic activity below 180°C was better than a commercial catalyst (CuO/ZnO/Al₂O₃) owing to the cooperative effect of copper and zirconium. Thus, CuO–ZrO₂ catalyst was found to be an attractive low–temperature water gas shift reaction catalyst. On the activity of CuO–ZrO₂ catalysts, a positive effect of H₂O and a negative effect of H₂ and CO₂ were observed. The catalysts were characterized by H₂–temperature programming reduction (H₂–TPR), N₂O chemisorption and X–ray photoelectron spectroscopy (XPS).