튜브형 제올라이트 NaA 분리막 제조 및 특성

<u>이혜련</u>, 안효성, 오윤진, 이용택^{*} 충남대학교 화학공학과 (ytlee@cnu.ac.kr^{*})

Synthesis and Characteristic of tubular type NaA zeolite membrane

Hyeryeon Lee, Hyoseong Ahn, Yoonjin Oh, Yongtaek Lee*
Dept. of Chem. Eng., Chungnam National University
(ytlee@cnu.ac.kr*)

서론

막을 이용한 분리는 분리막을 경계로 두 상을 물리적으로 격리하는 역할과 동시에 분리막을 통하여 특정 물질에 대한 투과성을 이용한 분리 시스템이다. 특정 물질에 대한 선택도와 분리막을 통한 투과도를 기준으로 막의 성능을 평가할 수 있다. 세라믹 분리막은고 분자 분리막에 비하여 열적, 기계적, 화학적 안정성이 높기 때문에 많은 연구가 수행된바 있다. 이 중 제올라이트 분리막은 결정의 특성으로 인하여 분자체 역할을 할 수 있으므로 최근 관심의 대상이다[1]. NaA형 제올라이트를 이용한 특정 물질에 대한 분리는주로 알콜계 물질의 분리[1~3, 8], 물/아세톤, 물/DMF, 물/디옥산에 대한 분리 연구[4],물/THF[9]등이 수행된 바 있다. α-알루미나 튜브를 지지체로 사용하여 기체 분리용 NaA 제올라이트 분리막을 합성한 후 He, H₂, CO₂, O₂와 같은 기체에 대한 투과 연구도수행되었다[7~8].

본 연구에서는 에탄올 수용액으로부터의 물을 분리하기 위하여 친수성의 NaA 제올라이트 분리막을 수열 합성 제조하였으며 NaA 제올라이트 분리막을 이용한 투과 증발 실험을 통하여 그 분리 특성을 살펴보고자 하였다.

이론

선택도 a와 총투과도 J는 다음과 같이 정의된 식을 이용하여 계산할 수 있다.

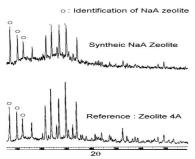
$$\alpha = \frac{(Y_{H_2O}/Y_{EtOH})}{(X_{H_2O}/X_{EtOH})}$$
(1)

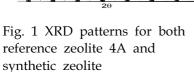
$$J = \frac{P}{At}$$
 (2)

여기서 Y_{H_2O}/Y_{EtOH} 는 투과액에서의 물과 에탄올의 질량비이고, X_{H_2O}/X_{EtOH} 는 공급된물/에탄올의 질량비를 나타낸다. P는 투과된 물의 질량(g), A는 투과 면적(m^2), t는 투과시간(hr)을 의미한다.

실험

NaA 제올라이트 분리막 합성에 사용되는 지지체는 4.7㎝ 길이 α-알루미나 튜브(O.D. 1㎝, I.D. 0.7㎝, USF/Schumacher, U.S.A)를 양 끝을 유약을 얇게 발라 2회 소성하여 증류수로 1차 세척을 한 뒤, 2차로 초음파 세척을 한 후에 이용하였다. 그리고 세척을 한 튜브를 진공오븐에서 105℃로 1시간 이상 건조한다. NaA 제올라이트 합성 시 사용된 원료의 조성 비율은 1Si : 2Al : 2Na : 120H₂O이다. Si의 원료로서 Aerosil 300(Fumed silica, Deggusa, Germany)과 Ludox AS 40(40wt% SiO₂, DuPont, U.S.A)을 사용하였고, Al와 Na의 공급 원료로서 NaAlO₂(Wako pure chemical industries, Japan)와 NaOH(EP


grade, Deajung, Korea)을 사용하였다. 이들 시약은 별도의 정제 없이 사용하였다. 합성후 튜브로부터 나온 NaA 제올라이트 분말을 건조하여 X선 회절 분석기(X-ray diffraction, D/Max-IIB, Rigaku Co., Japan, 30kV, 15mA) 분석에 사용한다. 또한 튜브의 안쪽에 형성된 NaA 제올라이트 분리막의 결정과 두께를 관찰하기 위하여 주사전자현미경(scanning electron microscopy, S-2350, Hitach, Japan) 분석을 수행한다.


제조된 NaA 제올라이트 분리막의 세공의 크기(4.2Å)보다 동력학적 지름이 큰 tri-isopropyl benzene(TIPB, 지름=8.2Å)을 이용하여 투과 증발 실험을 하여 결함 여부를 검사한다. 결함 시험을 통하여 결함 없음이 확인된 NaA 제올라이트 분리막을 사용하여 투과 증발 실험을 한다. 에탄올 80wt%~99wt%까지의 공급액 농도 범위에서 투과 증발 실험을 하였으며 공급액과 투과액의 농도 분석을 위해 기체 크로마토그래피(M600D, 영린과학, 칼럼: Porapak Q, Supelco)로 분석하였다.

결과 및 토론

실험을 통하여 합성된 NaA 제올라이트 분막의 X선 회절 분석(XRD) 결과를 Fig. 1에 나타내었다. A형 제올라이트 기준 물질로 Aldrich사의 Molecular sieve 4A를 사용하였으며 참고문헌[7]을 참조하여 기준 물질이 NaA형 제올라이트임을 확인하였다. 그림에서 볼수 있듯이 본 연구를 통하여 합성된 제올라이트는 NaA형 제올라이트에 해당함을 확인할수 있다. Fig. 2, 3에 NaA 제올라이트 분리막의 주사전자현미경(SEM) 사진을 나타내었다. Fig. 2에서 알 수 있듯이 약 1μ 의 결정 크기를 갖는 제올라이트 결정이 형성되었음을 알수 있고, Fig. 3를 통하여 제올라이트 막이 약 $5\sim6\mu$ 에 범위의 두께로 고르게 형성되었음을 알수 있다.

투과 증발 총 투과도는 식 (2)를 통하여 계산하였으며 그 결과를 Fig. 4에 나타내었다. 에탄올의 농도가 증가함에 따라 수용액 속에 들어 있는 물의 농도가 감소하므로 물의 투과량은 줄어들게 된다. 그러나 98wt%이상에서 투과량이 증가함을 볼 수 있고, 투과액 속의 에탄올 농도가 증가함을 알 수 있다. 에탄올 농도가 98wt% 이하인 경우 제올라이트 결정 기공 내에 수증가가 선택적으로 흡착되어 에탄올 증기 투과 현상을 방해함으로서 에탄을 투과량이 매우 적었으나, 공급액 내 물의 양이 현격하게 감소하게 될 경우 제올라이트 기공은 물의 농도가 희박하기 때문에 에탄올 증기가 일부 흡착되어 수증기의 방해현상이 없어지므로 자유롭게 에탄올이 투과될 수 있고 이에 따라 에탄올의 투과량이 증가하게 되는 것으로 판단된다. 에탄올 98wt% 이상에서 투과액의 에탄올 농도가 높아지므로 Fig. 5에 보이는 것과 같이 에탄올의 농도가 증가할수록 선택도가 떨어짐을 알 수 있다. Table 1에 공급액과 투과액의 농도에 따른 투과량과 선택도를 나타내었다.

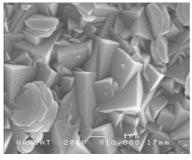
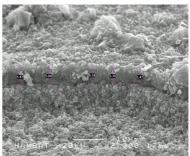
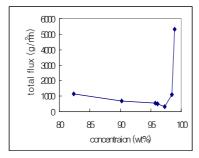




Fig. 2 Suface of NaA zeolite Fig. 3 Cross section of NaA membrane on a - alumina zeolite membrane on a-tube alumina tube

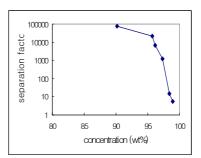


Fig. 4 Total flux of water / ethanol mixture

Fig. 5 Separation factor of water / ethanol mixture

Table 1. Total flux and separation factor of ethanol

<u>-</u>					
공급농도		투과농도		투과도	선택도
에탄올	물	에탄올	물	十叶工	건택도
82.3666	17.6334	0.0044	99.9956	1165	10⁵ 이상
90.1985	9.8015	0.0125	99.9875	939	73611
95.7114	4.2886	0.1004	99.8996	688	22206
96.1296	3.8704	0.3720	99.6280	555	6652
97.3083	2.6917	2.9575	97.0425	486	1186
98.4312	1.5688	80.8247	19.1753	1087	15
98.9425	1.0575	94.3548	5.6452	5291	6

감사

이 논문은 2002년도 한국학술진흥재단의 지원에 의하여 연구되었음(KRF-2002-041-D00115)

참고문헌

- 1. 최호상, 김재홍, 이석기, 박헌휘, "NaA 제올라이트 막에 의한 이소프로필 알코올 수 용액의 탈수 분리 특성", 멤브레인, **12**(3), 158(2002)
- 2. 김건중, 나세종, "다공성 제올라이트 멤브레인의 합성 및 알코올/물 분리에의 응용", 멤브레인, **9**(2), 97(1999
- 3. Masakazu Kondo, Mitsuru Komori, Heidetoshi Kita and Ken-Ichi Okamoto, "Tubular-type pervaporation module with zeolite NaA membrane", *Journal of Membrane Science*, **133**, 133(1997)
- 4. Hidetoshi Kita, Kohji Horii, Yasuharu Ohtoshi, Kazuhiro Tanaka and Ken-Ichi Okamoto, "Synthesis of a zeolite NaA membrane for pervaporation of water/organic liquid mixtures", *Journal of Materials Science Letters*, **14**, 206(1995)
- 5. 14. Kanna Aoki, katsuki Kusakabe and Shigeharu Morooka, "Gas permeation properties of A-type zeolite membrane formed on porous substrate by hydrothermal synthesis", *Journal of Membrane Science*, **141**, 197(1998)

- 6. Kanna Aoki, Katsuki Kusakabe and Shigeharu Morooka, "Separation of gases with an A-type zeolite membrane", *Ind. Eng. Chem. Res.*, **39**, 2245(2000)
- 7. M. M. J. Treacy, J. B. Higgins, R. Von Ballmoos, "Collection of Simulated XRD Powder Patterns for Zeolites", *Zeolites*, **16**(5~6), 323(1996)
- 8. D. Shah, K. Kissick, A. Ghorpade, R. Hannah and D. Bhattacharyya, "Pervaporation of alcoho-water and dimethylformaide-water mixtures using hydrophilic zeolite NaA membranes: mechanisms and experimental results", *Journal of Membrane Science*, **179**, 185(2000)
- 9. Shiguang Li, Vu A. Tuan, Richard D. Noble and John L. Falconer, "Pervaporation of water/THF mixtures using zeolite membrane", *Industrial & Engneering Chemistry Research*, **40**(21), 4577(2001)