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1. INTRODUCTION
Rapid progress in membrane technology over last few decades has made it possible to replace many of the conventional separation processes, such as gas absorption, distillation, and liquid-liquid extraction, by more efficient membrane based processes. A typical equipment consists of a module of hollow fibers made out of a suitable membrane material placed inside a cylindrical vessel or shell with a gas or liquid flowing on the either side of the membrane. The difference in the concentration of a solute on the two sides causes the solute to diffuse from the bulk of the fluid on one side to that on the other through the membrane, thus affecting the separation. The entrance and the exit of the shell side fluid may be located such that the bulk of the fluid flow on the shell side is either perpendicular to the tube bundle (cross flow) or parallel (longitudinal). Such hollow fiber contactors are now commonly used, for example, in dialysis, gas separation, and blood oxygenators. The mass transfer process is often controlled by the resistance on the shell side and accurate estimates of the shell side mass transfer coefficients are needed for designing these units. 

Rigorous calculations of the shell side mass transfer coefficient in finite length contactors are quite difficult even for the simple case of laminar flow parallel to a random array of straight rigid tubes. Therefore we shall analyze in detail first the two limiting cases of short contactors and long contactors. For short contactors the analysis will be similar to that of Bao et al. (1999) but will account for the overlap of the concentration boundary layers in a somewhat ad-hoc manner. The long contactor calculations turn out to be more involved and interesting from the physics and theory standpoint so that the major portion of this paper is devoted to this limit. It is shown that an expression for the mass transfer coefficient derived by combining the results of these two limiting cases gives estimates that are in good agreement with some of the experimental investigations. 

2. FORMULATION OF THE PROBLEM AND THE METHOD

We begin with the analysis for the mass transfer coefficient at large axial distances. We consider a countercurrent shell-and-tube configuration as shown in Figure 1. The flow on both sides is assumed to be laminar, fully developed, and parallel to the axes of the rigid tubes. We shall consider here a special case when the volumetric flow rate of the shell side fluid equals that on the tube side. The average concentrations of the solute on the tube and shell sides increase linearly with the axial distance in this case and the total mass transfer per unit length is independent of the axial position. With no loss of generality, we let the average concentration gradient equal to 1/Pe and write 

Ct* (x1, x2, x3) = (x3 / Pe) + Ct (x1, x2) 

(1)

Cs* (x1, x2, x3) = (x3 / Pe) + Cs (x1, x2)      (2)

Here, x3-axis is taken to be along the axes of the tubes and (x1, x2 ) are the coordinates of a point in the plane normal to the tubes. The distances are non-dimensionalized by a, the radius of the tubes.  Pe= a U/Ds is the Peclet number based on flow outside the tubes. U is the superficial velocity of the fluid on the shell side, and Ds is the diffusivity of the solute in the shell side fluid. Upon substitution of (1) and (2) into mass conservation equations for the solute on both shell and tube side we obtain 

(2 Cs = us,  


     (3)

(2 Ct = -ut /((c ().    
 (4)

Here, us is the velocity of the fluid non-dimensionalized by the superficial velocity U and the Laplacian operator (2 is taken in the x1-x2 plane. And (c =Dt /Ds is the ratio of diffusivities in the two fluids, and ut is the standard non-dimensional parabolic profile for laminar flow through circular tubes. For a tube centered at the origin, we have ut =2(1- r2). Here, r is the radial distance from the center of the tube. 

The centers of N tubes are placed within a unit cell of a periodic array. The boundary conditions for the concentration of the solute are therefore spatial periodicity and the continuity of concentration and flux at the surface of the tubes. Note that we have assumed that the tube membrane thickness is negligibly small and offers no resistance to the mass transfer. We have also assumed that the partition coefficient of the solute in the two fluids is unity. 

We shall be interested in Sherwood number, the non-dimensional mass transfer coefficient. It is easily shown that the overall Sherwood number is given by 

Shov = 1/ (2 ( (Cov ).    
  (5)

We shall use a multipole expansion method outlined by Sangani and Yao (1988) for determining the velocity and concentration fields. The method uses periodic fundamental singular solutions of Laplace and biharmonic equations and their derivatives to construct velocity and concentration fields. 

3. RESULTS  

Figure 2 shows the inverse of shell side Sherwood numbers as functions of N, the number of tubes per unit cell, for ( = 0.1, 0.3, 0.5 and (c = (. The results were obtained by averaging shell side concentration difference over 100 hard-disk configurations for each N. A molecular dynamics code was used for generating hard-disk random configurations. We see that the inverse of Sherwood numbers increases logarithmically with N at large N. 

The logarithmic divergence arises due to the fact that the fundamental solution of Laplace equation in a two-dimensional space is log r. The tube side fluid acts as a source of solute while the shell side as a sink. Our theory will show that there is a net source due to the presence of each tube, and this would imply that the concentration disturbance caused by a tube would grow logarithmically. To show this let us begin by deriving the equation for the conditionally-averaged concentration, i.e. the ensemble-averaged solute concentration subject to a condition that a tube is present with its center fixed at origin. Inside the tube the solute concentration satisfies

(( <q>1 = - (c (2 <C>1 = ut / ( =2 (1 - r2) / ( ,   
     (6)

where <C>1 and <q>1 are, respectively, the conditionally-averaged concentration and flux. Outside the tube, the equation governing the conditionally-averaged concentration is slightly more complicated since a given point may lie inside another tube or outside all the tubes. Let ( be an indicator function whose value at a given point is unity if it lies inside a tube and zero otherwise. The conditionally-averaged source density <H>1 then equals 

(( <q>1 (r|0) = <H>1(r|0) = <( ut / ( - (1- ()us>1(r|0).         (7)

The apparent source due to the presence of tube at the origin as seen from a distance R is therefore given by 

Qap = 4 ((01 (1 - r2) ( -1r dr + 2 ((1R <( ut / ( - (1- ()us>1(r|0) r dr .        (8)

The above source must equal the net outward solute transfer from the surface r=R. At large r, the source density vanishes since the conditional averages converge to the unconditional averages and  <( ut / (>0=<(1- ()us>0=1. The integrand in the last integral in (8) therefore vanishes at large r and one may substitute R=( for the purpose of evaluating the total apparent source due to the presence of a tube at origin. Since <C>1 (r|0) must be function of r only for a random isotropic medium, and must satisfy Laplace equation at large r where the source density <H>1 vanishes, we must have that for large r

<C>1 (r|0) ( - Qap log r /(2 (D*) + const.


(9)

Here, D* is the effective diffusivity at large r satisfying  <q>1 = -D* ( <C>1. The behavior of <C>1  as predicted by (9) is valid for r large compared with unity (the tube radius) but small compared with the unit cell size, i.e. for 1<< r<<h. On the unit cell length scale <C>1 must, of course, satisfy the periodicity requirement.

We analyze the problem using the method of matched asymptotic expansions with (9) representing the behavior in the inner region, r << h. In the outer region, valid for r = O(h), <C>1 must satisfy Laplace equation to leading order, must be spatially periodic, and must match with (9) as r ( 0. Therefore it is shown that

( Cs = B log N +O(1)  with B = Qap/(2 ( D* (1- ()).



(10)

In order to determine the coefficient B and O(1) term, we employ an effective-medium theory. In our theory, a test tube at origin is surrounded by a clear fluid up to a distance R beyond which is effective-medium. The exclusion distance R is determined by considering volume exclusion effect near a test tube at origin. The details are given in Koo and Sangani (2002). The solid lines in Figure 2  indicates the Sherwood numbers by the effective-medium theory. The theoretical predictions are in reasonably good agreement with the simulation results. 

4. MASS TRANSFER AT SMALL AXIAL DISTANCES  

From practical point of view the contactors must be made short enough so that the concentration boundary layers around the tube surface remain thin compared with the average spacing between the tubes. This condition is approximately satisfied when L/a << Pe 1/3, L being the length of the tubes. We shall limit our analysis to the case when the concentration of the tube wall is constant for x3 >0. As mentioned in Introduction we take the correction for overlapping concentration boundary layers for random arrays of tubes into account. Then the average Sherwood number can be given by

ShL=3/2 ((02(z3)/(Az2L) Pe {1-exp[-(Az2 L2/3)/((z2(02 Pe2/3 )]}.
(11)

Here, (0 and (z are, respectively, obtained from the calculation of the fraction of overlapped boundary layers and wall stress at the surface of tubes. And Az is 1.276. The above can be added to the Sherwood number corresponding to the fully developed case to yield an estimate for arbitrary values of L.

5. COMPARISON WITH EXPERIMENTS

The most commonly cited correlations for Sh in hollow fiber contactors are due to Yang and Cussler (1986) and Prasad and Sirkar (1988). Interestingly Yang and Cussler (1986) used a module of 2100 fibers in a set of their experiments. The experiments were carried out with water containing dissolved oxygen on the shell side and either vacuum or nitrogen gas on the tube side at several flow rates with the Reynolds number in all cases less than 1 and the Sherwood number was found to be independent of the flow rate and equal to 0.08 for (=0.4. The investigators could not clearly explain their result of unexpectedly low Sherwood numbers. From their experimental conditions, we expect our results for the fully developed case to be applicable. The estimation by our theory yields Sh of about 0.09, quite close to the value reported by Yang and Cussler. Note that these values for random arrays are much smaller than a Sherwood number of about 4 for a square array with (=0.4. This comparison also illustrates the significance of the shell side mass transfer resistance in these contactors when a liquid is flowing on the shell side and a gas on the tube side. 

Prasad and Sirkar (1988) carried out experiments with liquids flowing on both tube and shell sides, the liquid on one side being typically water and on the other side an organic liquid (xylene, n-Butanol, or MIBK). The mass transfer rates of a solute (acetic acid, succinic acid, or phenol) across both hydrophobic and hydrophilic membranes were determined for various (, Re and L. Figure 3 shows that our theory is in good agreement with their empirical correlation.

6. CONCLUSION

We have shown that the concentration disturbance caused by each tube grows logarithmically with the distance for distances small compared with the unit cell size. This leads to large concentration differences between the tube and shell side fluids for systems with large number of tubes per unit cell (or large shell to tube radius ratio), and, consequently, small Sherwood numbers. Effective-medium theory is found to give reasonable estimates of the Sherwood numbers.
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Figure 1. A schematic representation of


        a hollow fiber contactor
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Fig.1 Sherwood number vs. Reynolds number.The triangles, squares, and filled squares are from Costello's results, theory, and Prasad and Sirkar's result.
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