PVT CFD

CFD Simulation of Rarefied Gas Flows in Physical Vapor Transport (PVT)

Hyun-Seob Song, Ye Hoon Im, and Sang Phil Han Process Technology Research & Development LG Chem / Research Park

Physical Vapor Trans	port (PVT)		,	,		
				, PVT	가, closed	open
ampoule ,						
, 가 .						
[1,2],		(microgravity)				
			[1], [2],			
PVT						, 3
Computational Fluid Dynamics(CFD)			PVT			
(rarefied gas)	. Knudsen	(Kn)		Navi	er-Stokes	slip &
jump boundary conditions(SJBCs)		,	CFD		FLUENT	6
			Rayleigh	(Ra)	Grashof	(Gr)가
가	가	,		(degree of rarefaction)		
가						
		,			가	

•

Kn

 1
 PVT

 7
 source zone
 ,

Kn 0.1 , Navier-Stokes SJBCs
[3]. Thermal creep 1 SJBCs .

$$\mathbf{v} - \mathbf{v}_{w} = \frac{2 - \sigma_{v}}{\sigma_{v}} \lambda \left(\frac{\partial \mathbf{v}}{\partial n}\right)$$
(1)

$$T - T_{w} = \frac{2 - \sigma_{T}}{\sigma_{T}} \left[\frac{2\gamma}{(\gamma + 1)}\right] \frac{\lambda}{\Pr} \left(\frac{\partial T}{\partial n}\right)$$
(2)

(mean free path)

$$\begin{split} \lambda &= \text{mean free path, } \sigma_v &= \text{tangential-momentum-accommodation coefficient, } \sigma_T &= \text{thermal} \\ \text{accommodation coefficient, } \gamma &= \text{specific heat ratio, } Pr &= Prandtl number, } w \\ \vdots & \gamma &= \gamma \\ \vdots & \gamma &= \gamma \\ \end{split}$$

PVT

,

PVT

8 2 2002

가

PVT

- 1. Mackowski, D.W., Rao, V.R., Walker, D.G., and Knight, R.W., "Numerical Investigation of the Effects of Thermal Creep in Physical Vapor Transport", *J. Crystal Growth*, **179**, 297 (1997)
- 2. Fujiwara, S., Watanabe, Y., Namikawa, Y., Keishi, T., Matsumoto, K., and Kotani, T., "Numerical Simulation on Dumping of Convection by Rotating a Horizontal Cylinder during Crystal Growth from Vapor", *J. Crystal Growth*, **192**, 328 (1998)
- 3. Gad-el-Hak, M., "Flow Physics in MEMS", Mec. Ind., 2, 313 (2001)

Figure 1: Crystal growth process using PVT

Figure 2: Streamlines (left) and temperature contours (right): dimensionless tube radius =1, dimensionless pressure at outlet = (a) 0.0247, (b) 1.00, and (c) 48.4

Figure 3: Streamlines (left) and temperature contours (right): dimensionless pressure at outlet = 1, dimensionless tube radius = (a) 0.714, (b) 1.00, and (c) 1.286