RuS_2/TiO_2 -SiO_2

Photocatalytic Water Decomposition for Hydrogen Production over RuS₂/TiO₂-SiO₂

/

The-Vinh Nguyen, Suck-Jun Lee and O-Bong Yang

School of Environmental and Chemical Engineering, Chonbuk National University, 664-14, 1stStreet, Dukjin-Dong, Chonju, Chonbuk 561-756, Korea.

1. Introduction

Photocatalytic water splitting over TiO_2 electrodes was discovered by Fujishima & Honda in 1972 [1]. Since then, not only TiO_2 -based catalysts, but also various kinds of photocatalysts for water decomposition were discovered so far with different characteristics and efficiencies. Among such photocatalysts for hydrogen production, ruthenium disulfide (RuS₂) that is due to high stability against photocorosion along with potential electronic properties (E_g and E_{fb}) towards hydrogen formation [2] has been reported by K. Hara el al. [3]. In order to overcome low surface area and band-gap energy of RuS₂, these authors employed SiO₂ and/or TiO₂ as supports [3].

In this study, to further enhance the role of supports we employed gel-derived TiO_2 -SiO₂ mixed oxides that are well known as supports and catalysts with excellent properties in comparison with TiO_2 and SiO₂ alone. The detailed investigation of characterization of supports, the effects of support, RuS₂ loading, and sacrificial reagent was conducted and discussed in this publication.

2. Results and Discussion

 TiO_2 (P-25, Degussa Co.) and SiO_2 (amorphous, Strem) as supports were used as received. TiO_2 -SiO₂ mixed oxides were prepared by sol-gel processes. RuS₂ was loaded on supports at 0.5, 1, 1.5, and 4 wt% by using conventional impregnation and sulfidation method.

The photocatalytic water decomposition was carried out in a batch type reactor (1.5 g of catalyst and 700 ml of diluted water) with an inner cell under UV irradiation at room temperature. The evolution gases were analyzed by GC equipped with TCD and molecular sieve 5 A capillary column (30 m). Photocatalysts were characterized by XRD (Rigaku, with Cu-K_a radiation over a 20 range of 10 - 80°), nitrogen adsorption (BET) using Micromeritics ASAP 2100 analyzer, UV-Vis DRS (Shimadzu-UV 525) and Capacitance-Voltage (C-V) technique. The setup of C-V measurement consisted of a lock-in amplifier (EG&G 5210) coupled with potentostat (EG&G 273) and software (EG&G M352). The data of C-V were used for evaluating the flat band potential by means of Mott-Schottky equation: $C^{-2} = 2(V - V_{fb} - KT/e)/\epsilon\epsilon_0 eN_i$ (1)

where C is the total measured capacitance, ϵ is the dielectric constant of the material, ϵ_o the

permittivity of the vacuum, e the electron charge, N_i the concentration of donors in n-type semiconductor.

It is apparently that the band-gap energy (E_g) of TiO₂-SiO₂ mixed oxide was higher than that of bare TiO₂ (P-25) and SiO₂ (Table 1). The explanation has been ascribed to the quantum size and support effect [4]. On the other hand, the BET specific surface areas of SiO₂, TiO₂-SiO₂ were substantially higher than that of TiO₂ (P-25) as expectation. On loading RuS₂, the decreasing of surface areas was observed over all of obtained catalysts. These results were ascribed to the high crystallinity and therefore low specific surface area of RuS₂.

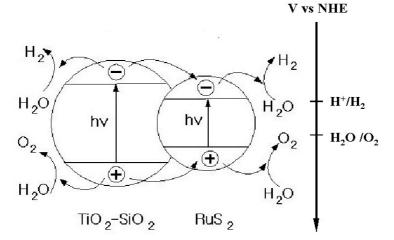
It is well-known that the flat band potential (V_{fb}) of a semiconductor can be obtained from the intercept of the Mott-Schottky plot [5] by using the equation (1). Nonetheless, the intercepts of the Mott-Schottky plots did not gather precisely at one potential. On increasing AC frequency above 1 kHz, the intercepts significantly shifted toward more negative potential. For this reason, the AC frequency at which the flat band potential was indicated was fixed at 1 kHz in this work. This frequency is typically used for the measurement of the Mott-Schottky plot [6]. It was determined that the flat band potential of TiO₂-SiO₂ vs NHE was significantly higher than that of bare TiO₂ whereas lower than that of SiO₂ alone.

Table 1 showed the rate of hydrogen formation over various kinds of photocatalysts. The rate of hydrogen evolution as high as 24 μ mol/20 h was observed on TiO₂-SiO₂ mixed oxide compared to the trace over TiO₂ and SiO₂. The explanation could be attributable to the band-gap energy of TiO₂-SiO₂ estimated at 3.2 eV while that of bare SiO₂ and TiO₂ determined around 2.3 [7] and 3.0 eV, respectively. Furthermore, TiO₂-SiO₂ mixed oxide showed the flat band potential much higher than that of bare TiO₂. In other words, the reduction power of TiO₂-SiO₂ was energetically favorable for water photolysis in comparison with bare TiO₂. Although SiO₂ alone was higher than TiO₂-SiO₂ in reduction power to reduce water, it was too low in band-gap energy to absorb UV illumination efficiently.

The effect of RuS₂ loading over the rate of hydrogen evolution was presented in Table 1. It was found that 1 wt% RuS₂ over TiO₂-SiO₂ was the optimum loading with the rate of hydrogen formation as high as 518 μ mol/20 h. The rate of hydrogen evolution was significantly declined as the loading of RuS₂ over TiO₂-SiO₂ was either decreased or increased beyond 1 wt%. It was well-known that RuS₂ is very stable against photocorrosion along with favorable electronic properties towards hydrogen production [2]. As a consequence, RuS₂ doped on TiO₂-SiO₂ was believed to improve the reduction driving force of derived photocatalyst to reduce water as well as the enforcing of free electron production. Nonetheless, on increasing the amount of RuS₂ over support, the interparticle electron transfer would be suppressed due to the enhanced recombination of photo-excited electrons and holes. In addition, it was known that the E_g in a range of 1.3-1.85 eV [2] along with V_{fb} of -0.48 V versus NHE, pH 0 and -0.56 eV, pH 14 [2] of single-crystal RuS₂ was smaller than that of colloidal RuS₂ with 2.8 eV for E_g and 0.6 V versus NHE for V_{fb} [8] as well as that of supported RuS₂ in this report with 2.0 eV for E_g . These results have been ascribed to the size effect [3]. Accordingly, it was proposed that on increasing the loading of RuS₂ over TiO₂-SiO₂ the lower dispersion of RuS₂ on the support would lead to the formation of single-crystal RuS₂ thereon and consequently, diminish the E_g and V_{fb} of RuS₂. In other words, the reduction power of RuS₂ was too weak to reduce water and therefore, the trace of hydrogen was observed over RuS₂(4)/TiO₂-SiO₂.

It has been suggested that the V_{fb} (0.6 V) of colloidal RuS₂ was hardly changed with the change in the E_g thereof [3]. From the E_g value of TiO₂-SiO₂, the energy band levels of photocatalysts in aqueous solution of Na₂SO₃ 0.1 M, pH 9 in relation to the redox potential of water were presented in Fig. 1 and accordingly, it was proposed that the charge transfer processes of photo-excited electrons on the conduction band of TiO₂-SiO₂ to RuS₂ and holes on the valence band of TiO₂-SiO₂ to RuS₂ were possible. For that reason, possible charge transfer processes between RuS₂ and TiO₂-SiO₂ were believed to improve the efficiency of charge separation, resulting in the enhancement of reduction and oxidation over the photocatalyst.

EDTA, Na₂SO₃, Na₂S, and CH₃OH employed as electron donors showed almost similar effects on the rate of hydrogen evolution. Meanwhile, the combination of Na₂SO₃ and Na₂S in a aqueous solution was found to substantially improve the formation of hydrogen over the RuS₂(1)/TiO₂-SiO₂ photocatalyst as high as 1.303 mmol/h. This result was in consistence with the previous report [3] in which Na₂S/Na₂SO₃ was found as the best electron donors on RuS₂/TiO₂ and RuS₂/SiO₂ towards hydrogen production. It has been reported that the flat band potential of RuS₂ would be shifted towards a more negative potential in an Na₂S aqueous solution [3]. As a result, hydrogen formation is energetically enhanced. On the other hand, it also reported that the addition of SO₃²⁻ ions to an S₂²⁻ solution enhanced hydrogen formation over RuO₂/CdS photocatalyst [3].


In summary, the highest rate of hydrogen formation was observed on RuS_2 supported over TiO_2 -SiO₂-mixed oxide that was ascribed to the higher band-gap energy and/or stronger reduction driving force of TiO_2 -SiO₂ support in comparison with bare TiO_2 and SiO₂. The flat band potential along with the band-gap energy of TiO_2 -SiO₂ was higher than that of supported RuS_2 that was believed to bring about the charge transfer processes of photo-excited electrons on the conduction band of TiO_2 -SiO₂ to RuS_2 and holes on the valence band of TiO_2 -SiO₂ to RuS_2 . Consequently, it was believed to increase the efficiency of charge separation, resulting in the enhancement of reduction and oxidation over the photocatalyst. On increasing RuS_2 over TiO_2 -SiO₂ beyond the optimum loading (1 wt%), the photoactivity of catalyst was substantially declined that was due to the decreasing of reduction power of RuS_2 towards hydrogen production.

References

- [1] Fujishima, A.; Honda, K. Nature 1972, 37, 238.
- [2] H. Ezzaouia, R. Heindl, R. Parsons, H. Tributsch, J. Electroanal. Chem. 145 (1983) 279.
- [3] K. Hara, K. Sayama, H. Arakawa, Applied Cat. A: General 189 (1999) 127-137.
- [4] X. Gao, I.E. Wachs, Cat. Today 51 (1999) 245.
- [5] Mollers, F., Tolle, H.J., Memming, R., J. Electrochem. Society 121 (1974) 1160.
- [6] O'Regan, B., Graetzel, M., Nature 353 (1991) 737.
- [7] N. Itoh, K. Tanimura and C. Itoh, The Physics and Technology of Amorphous SiO₂, ed. R.A.B. Devine (Plenum, New York, 1988) p.135.
- [8] M. Ashokkumar, A. Kudo, T. Sakata, Chem. Phys. Lett. 229 (1994) 383.

Table 1: Eg, BET specific surface area and rate of hydrogen formation of photocatalysts

8° 1			· ·
Photocatalyst	$E_{g}(eV)$	BET specific	Rate of hydrogen
		surface area (m^2/g)	formation (µmol/h)
SiO ₂	2.3 [7]	292	Trace
TiO ₂	3.0	48	Trace
TiO_2 -SiO ₂	3.2	220	1.2
$RuS_2(1)/SiO_2$	-	-	7.76
$RuS_2(1)/TiO_2$	-	-	18.36
$RuS_2(1)/TiO_2-SiO_2$	-	180	25.9
$RuS_2(0.5)/TiO_2-SiO_2$	-	-	14.8
$RuS_2(1.5)/TiO_2-SiO_2$	-	-	11.2
$RuS_2(4)/TiO_2-SiO_2$	-	-	0.5

Fig.1. Schematic diagram of band energy levels of TiO₂-SiO₂-supported RuS₂ in an Na₂SO₃ aqueous solution, pH 9.