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INTRODUCTION

 We suggested a right equilibrium expression for the reaction of penicillin G with Amberlite 

LA-2[1], we developed the mass transfer model with negligible continuous aqueous film 

resistance for the reactive extraction of penicillin G in a dispersed liquid-liquid extraction 

system, in which its extraction rate is very high [2]. In the work, justification of the mass 

transfer model will be proved. For this, we will present several mass transfer models which 

describe transport of penicillin G from continuous aqueous phase to dispersed organic drops 

and compare the experimental kinetic data with the calculated results from the models. 

MASS TRANSFER MODELS

 In a liquid-liquid dispersion extraction system, undissociated penicillin acid (HP) in the 

continuous aqueous phase reacts with the extractant (A), Amberlite LA-2, in the dispersed 

organic phase to form penicillin G-Amberlite LA-2 complex (A2(HP)2 or C) at the interface 

between the two phases. When a diluent of the organic phase is highly nonpolar, the 

interfacial reaction is given as follows [1]:

2 2 2 2A HP A HPKeq+ ← → ( ) (1)

The complex diffuses into the dispersed organic drops. Also, the mass transfer resistance in 

the continuous aqueous film was neglected because stirrer speed was fast. Here, we suggested 

two probable mass transfer models which describe transport of penicillin G from continuous 

phase to organic drops having the average radius of R:

Model 1: Diffusion controlled in organic drops with very fast interfacial reaction

The mass balance of penicillin G in the continuous aqueous phase is expressed by
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The mass balances of complex and extractant within a drop are represented as follows:
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When the interfacial reaction is very fast, the reaction equilibrium exists at the interface and 

is represented by
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The initial and the boundary conditions are expressed as follows:
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Model 2: Interfacial reaction and diffusion controlled in organic drops

If the interfacial reaction is elementary, the mass balance of penicillin G in the continuous 

phase is expressed by
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is substituted to where k f
'
is the forward reaction rate constant and Ka  is the acid dissociation 

constant of penicillin G. The mass balances of complex and extractant within a drop are 

expressed by Eqs. (3) and (4) as given in the first mass transfer model. To solve these 

differential equations, one initial condition and two boundary conditions are required. Only the 

second boundary condition among the three conditions given in Eqs. (6)-(8) is changed as 

follows:

B.C. 2:

EXPERIMENTAL

 The continuous aqueous phase was prepared by dissolving penicillin G potassium salt 

(Sigma-Aldrich Co.) in a citrate buffer solution, which maintains constant pH throughout the 

experiments. The dispersed organic phase was prepared by dissolving Amberlite LA-2 

(Sigma-Aldrich Co.) in kerosene. A cylindrical flat-bottomed glass vessel set up in a water 

bath maintained at 25℃. A six flat-blade turbine impeller stirred at 250 rev/min. Samples 

were taken from the vessel at intervals. penicillin G concentration was analyzed by a UV 

spectrophotometer (UV2-100, ATI Unicam) at 258 nm. The initial concentration of Amberlite 

LA-2 in the dispersed organic phase was 50 mM, pH of the continuous aqueous phase was 

5.0, and the initial concentration of penicillin G in the continuous aqueous phase ranged from 

30 to 200 mM.

RESULTS AND DISCUSSION

 Figs. 1 and 2 show the effect of initial penicillin G concentration in the continuous aqueous 
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phase on extraction of penicillin G for Model 1 and Model 2, respectively. According to 

Model 1, mass transfer of penicillin G is controlled only by the diffusion of the complex in 

organic drops. According to Model 2, on the other hand, the interfacial reaction as well as 

the diffusion functions as rate determining steps. Also, all the lines originate from the point 

(0,1) which is not shown in the figures. The initial extraction rate based on the normalized 

penicillin G concentration (dY dtP t/ =0 ) for Model 1 in Fig. 1 is higher than that for Model 2 

in Fig. 2 because the interfacial reaction is at equilibrium state in the case of Model 1. Also, 

degrees of extraction at 300 sec for the two models were almost the same, which shows that 

the extractant in an organic drop was all saturated with the undissociated penicillin acid at 

that time. In two models, the initial extraction rates increased with the increase in the initial 

penicillin G concentration as long as both initial concentration ratio of penicillin G to the 

extractant and interfacial reaction rate were not high. This extraction behavior was observed in 

our previous ELM system for extraction of penicillin G [3,4], whose transport mechanism may 

be explained by the diffusion-controlled models with the reaction equilibrium or the elementary 

reaction at the interface. However, the calculated results from Model 2 fit the experimental 

data much better than those from Model 1. Therefore, it could be concluded that mass 

transfer of penicillin G was controlled by both of the diffusional 

resistance in organic drops and the interfacial reaction resistance.  

          
Fig. 1. Comparison between the calculated results from Model 1and
the experimental data on penicillin G extraction as a function of initial
concentration of penicillin G in the continuous aqueous phase
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Fig. 2. Comparison between the calculated results from Model 2 and
the experimental data on penicillin G extraction as a function of initial
concentration of penicillin G in the continuous aqueous phase

Conclusions 

 Reactive extraction of penicillin G from continuous aqueous phase to dispersed organic phase 

in agitated vessels was simulated using two mass transfer models with negligible continuous 

phase resistance. The calculated results from one of the two models (Model 2), in which mass 

transfer of penicillin G was controlled by the diffusion in organic drops and the interfacial 

reaction, fit the experimental data for degree of extraction better. 
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