
Theories and Applications of Chem. Eng., 2002, Vol. 8, No. 2 

 

3277

고분자 용액의 용매의 활동도: 그룹 기여 방법 

장 봉호, 배 영찬  
한양대학교 공업화학과 분자열역학연구실   

Solvent Activity of Polymer Solution: Group-contribution Method 

Bong Ho Chang, Young Chan Bae  
Dept. of Industrial Chemistry and Molecular Thermodynamics Lab. 

 Hanyang University, Seoul 133-791, Korea 

 
Theory 

 
Primary lattice 

Oh et al. proposed a new Helmholtz energy of mixing as the form of the Flory and Huggins theory. The 
expression is given by 

 
                  ( ) ( )∆A N kT r rr O= + +φ φ φ φ χ φ1 1 1 2 2 2 1 2ln ln B φ   (1) 
 
where  is the total number of lattice sites and rN k  is the Boltzmann’s constant. iφ  and  are the volume 

fraction and the number of segments for component i, respectively. 

ri

χOB , a new interaction parameter, is 
defined and rearranged by 
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where the first term on the right-handed side represents degree of asymmetry between two molecules. However, 
we assume that in the polymer blend systems, the differences between  and  are not very large compared 

with those of polymer solution systems ( ), that is, phase diagrams of polymer blend systems nearly 
show the symmetric shapes and critical compositions are around 0.5. We find that the entropic correction by 

 is not very significant; therefore,  is fixed to 0.1415 obtained from mDLM, in which  is 1.7985 

as a universal constant. 

r1 2r

21 rr <<

ββC C Cγ
~ε  is a reduced interchanging energy as defined by  

                            ( )~ε ε ε ε ε= = + −kT kT11 22 122           (3) 
 
where ijε  is the i-j nearest-neighbor interaction energy. Therefore, χOB  is a function of temperature, 

composition and polymer chain length and has the second order approximation form of ~ε . For systems without 
oriented interactions between the segments of two polymers, only a primary lattice is needed to describe LLE of 
polymer blends. 
 
Universal function (Interaction energy correction term) 

In this work, we assume that  and  correct independently βC Cγ χOB , respectively. The simulation 

results from Ryu et al. for various polymer chain lengths of symmetric polymer blend systems ( = = 8, 20, r1 2r
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50, 100 ) are used to obtain the  and . The calculated results with the constant (Case I) are 

narrower than those of the simulation data. The  is calculated as a function of temperature (Case II); 
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where  is a critical temperature and  is calculated at . When cT cT T =T , Case II returns to Case I. 

Results show that values calculated from Case II give much better agreements with simulation results than those 
of Case I. As well known,  is implicating the correction of defects from the truncation of higher order 

interaction energy terms. Therefore, we regard  as a function of interaction energy.  

c

Cγ

The interaction energy dependence of fitted with the previous calculation results are obtained. The 

parameter is appeared to be linear with respect to reduced critical temperature ( 1~−
cε ). The following equations 

are suggested the interaction energy dependence of the values of as a universal function: Cγ

 
                             1~1749.7 −⋅+= c

c εγC                     (5) 

)0.3/0 −rTCγ                       (6) 

 
In our proposed model, parameter , which is not an adjustable parameter, depends on temperature and 

interaction energy. 

Cγ

 
Secondary lattice 

To take into account the oriented interactions between the segments of molecules, Oh et al. defined a new 
Helmholtz energy of mixing to improve the mathematical approximation defect of the Ising model proposed by 
Freed. The expression for the secondary lattice is given by  

 

               ( ) ( )
( )

∆A
N kT z

zC

C
ij

ij

ij

ij

sec,
~

~= + − +
−

+ −







2
1 1

1

1 1
η η η

δε η η
δε η η

α

α

 (7) 

 
where  is the number of i-j segment-segment pairs, Nij ijεδ~  is the reduced energy parameter contributed by 

the oriented interactions between i-j segment-segment pairs and η , which is set to 0.3, is the surface fraction 
permitting oriented interactions.  is the universal constant determined by comparing with Gibbs-Ensemble 

Monte-Carlo simulation data of Ising lattice. The best fitting value of  is 0.4880. Following the definition 

of 

Cα
~ε  in Equation (3), if the oriented interaction occurs in i-j segment-segment pairs, we replace ~ε  by 

ε kT A N kTij ij+ 2 ∆ sec,  in Equation (2). If the oriented interaction occurs in i-i segment-segment pairs, ~ε  

is replaced by ε kT − ∆A kiisec, .  T
 
 
 
Correlating Equations 

 Chemical potential of polymer 1 is given by 
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and a similar relation holds for chemical potential of polymer 2 
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The coexistence curve is found from the following conditions: 
 
    
 

                                ∆µ ∆µ1
′ = 1

″  (10) 

                                   ∆µ ∆µ2
′ = 2

″  (11) 
 
where  is the change in chemical potential upon isothermally transferring component i from the pure state 
to the mixture. Superscripts ´ and ˝ denote two phases at equilibrium. For phase equilibrium calculation, 
we require the experimental coordinates of the critical point. The critical temperature and critical volume 
fraction can be obtained by solving the following two equations simultaneously.  

∆µi

 
 

Results and Conclusion 
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In LLE calculation of polymer blend systems, the interaction energy correction term to reduce the truncation 
error gives the better results in the comparison of the numerical critical points and the coexistence curves with 
experimental data. In our model, the critical point determined numerically by the difference between the chain 
lengths of two polymers is the most important parameter in generating calculated coexistence curves. In spite of 
its simplicity and using only a few model parameters, the proposed model describes fairly well phase behavior 
of polymer blend systems and gives a general correlation of the mathematical model with the computer 
simulation in the phase behavior of polymer blend systems.  
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