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Introduction

The rigorous styrene monomer(SM) reactor model is highly valuable because it can be used in optimizing the
current operation, which has high operating cost due to the use of a large amount of expensive high-pressure
steam. In this study, a PC based simulator for a styrene monomer reactor has been introduced. The mathematical
kinetic model for an adiabatic radial-flow styrene monomer reactor has been used as a first principle model. A
neural network model has been developed for the catalyst deactivation model. Consequently these two models
are combined for simulation and optimization of the SM reactor. Some examples are tested with this simulator
and the potential usages of this program are investigated.

System Description
Fig. 1. shows the adiabatic radial flow reactor which is the target process in this study. In this SM reactor, three
major competing reactions((1)~(3)) and three side reactions((4)~(6)) are known.
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Hybrid Modeling of SM Reactor

1. First Principle Model

The kinetic model for the reactions is shown below.
Reaction amounts in reaction j is fj.

fi =Pk (Ppp— PsyPm/Kp), fo = PkyPyp, f3= PhsPppPp,, f1= k4PH2()PE7, fs= kSPHZ()PMEa
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Fig. 1 Current adiabatic radial flow reactor

Reaction amounts of components i is fj
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The governing equations are formulated like below.[5]
Mass balance

dy; 1 . .
= = 20l f, MW Y g =1 (10)
dT’ F j=1 J i=1

Energy balance

dT m
— = 2er21(— AH))f,/(FChp) (11)
=

Pressure drop
E — Pout_ Pm (12)

dr Rout - Rin
2. Neural Network Model
The neural network model consists of a set of processing units called neurons, connected to one another. The
neural network in thisstudy is a feed-forward network with one hidden layer, five input variables and one output
variable. By adjusting parameters in the coupling between neurons, the network is capable of learning from a set
of numerical data corresponding to the input and desired output.[6] Because of the time-varying characteristics
of catalyst activity, the recurrent neural network is used in this hybrid model.
The input variables are Temperature (T (k-1)), Feed rate (F (k-1)), Partial pressure of steam in feed (PSTM
(k-1)), Feed flowrate of ethylbenzene(EB) in feed (FEB (k-1)), Deactivation factor at time point k-1 ((k-1))
The output variable is Deactivation factor at time point k ((k))
3. Hybrid Model
After training, the proposed neural network model supplies the catalyst deactivation factor (®) at any operating
conditions. Mass balance, energy balance and pressure drop equations can be solved using given plant data.
From these equations, we can obtain reactor output data such as temperatures and composition of the product
from each reactor. The structure of the hybrid model couples the first principle model and the neural network
model.

Simulation Results

The proposed hybrid model is well fitted with the real plant data. Fig. 2 compares a real plant data with
simulation results using predicted catalyst deactivation factor (®). These figures show the performance of
styrene monomer and ethylbenzene that are the main materials of this process. The simulation results show good
performance within error. The simulation results show good performance of 0.4% relative error, compared with
1.7% relative error of the first principle model [7].
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Fig. 2 Comparison of simulation data and real data of reactors

Optimization of Operating Conditions
1. Problem formation
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The objective function for optimization is the profit of the styrene monomer process.
(Profit)=(Product sales)-(Variable cost)-(Fixed cost) 12)

Objective function
NC

Profit = Pr Fg, + PryFg,— Pr,

7

13)
Equality Constraints
fi = Pk (Pep— PsyPrn/Kp), fo= PkyPpp, fs = PhsPrpPp, fi= k4P}120PET, fs= kSPHZ()PMEa

P _ EZ' d97 1 m NC

fo = k’GFPH,OPC(), ki = k‘z‘o@fﬁp(ﬁj, ar  F (QWTszlfijMWiJ > ;1!% =1,
dT o = dP _ Pout_Pin _
9 27”"1/]_;(— AH)f/(FCp), 7 = mQS =P (L, F, Xy, X, P) (14)
Inequality Constraints
600 < T,z = 650,600 = T},p = 650,05 = ¢g=063,0=¢,=1 (15)

Products of this process are styrene monomer and toluene. But the productivity of toluene is not important factor
because productivity of toluene is much smaller than the productivity of styrene, while the prices are almost the
same. Variable cost contains the cost for steam production and raw material cost. To keep the feed at a fixed
temperature, steam cost for reactor 1 and naphtha cost for preheater of reactor 2 are needed. Variable cost
increases as the operating temperature increases. Fixed cost, raw material prices and empirical equations for
profit calculation are quoted from the real plant.

2. Single variable optimization

To determine the optimum trajectory of each operating variable, the other variables except one operating variable
are remained constant during the whole operating horizon. Fig. 3 shows results for single variable optimization.
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Fig. 3 Optimization Results for single variable

To simplifythe optimization problem of the multi operating y S/O ratio TinR1 TinR2
variables, a mathematical equation form, (10) was selected al 204618 44.9057 | 45.5467

(10y | a2 | -6.126E-8 | 6.58E-5 | 3.10E-5

)
t+ G a3 | 1.307E-4 | -0.09028 | -0.07295
In this equation, y is an operating variable and t is DOS(days on| 44 3.2464 548.339 | 547.145

stream). And al~a5 are variables and C1 and C2 are constants. The a5 | 1.0072E-2 | 1.6088 1.5644
fitted variables al~a5 in each equation are shown in table 3 error| 0.077% 0.016% | 0.017%

y= a,Log(t+ C))ayt*+ agt+ a, +

3. Multi-Variable Optimization Table. 1 Fitting results
Results of previous section are single variable optimization because variables become numerous when using
neural network method as time goes by. In this section, threevariables are optimized using previously fitted
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equations. To reduce the complexity of multi variable optimization problem, the proposed equations are used.
Since the number of time dependent variables is constant, this problem can be solved easier and more stable than
the optimization which changes all variables.

Fig. 4 shows optimization results. As shown in Fig. 4, S/O ratio should be increased slowly and inlet temperature
of each reactor should be increased. The optimum profit is 65.2 X 10®won/yr while the current profit is

52.0 < 10® won/yr.

B e — —
. -
. *o = — :‘l LEL} 4
R s s e g -
- ' —— & -
i 8 LR R o =2
a2 _ﬁ-nn : - TimEi B
Mol -
ARET & & 1aRE Fiadl
— ® lant data = LEL .
P = FisFi prwoca wd
proposed condition a ST
] - - - L1 L] -
B 108 (1] LER 4 BE3 (1E] q [IT] e LT (T T (1T
oos t-H]
(a) S/O Ratio (b) Tin of R1 and Ti, of R2

Fig. 4 Profile optimization results and current operating data

Concusion

The hybrid model combining the first principle model with neural networks has been developedfor an adiabatic
radial-flow dehydrogenation reactor in the styrene monomer production process. The neural network model has
predicted the catalyst deactivation factors and the first principle model calculates the reactor outlet data.

From simulation data, the maximum profit of this process has been calculated using real prices. Optimum
trajectories of all operating variables have been proposed.
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