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Introduction

The rigorous styrene monomer(SM) reactor model is highly valuable because it can be used in optimizing the 

current operation, which has high operating cost due to the use of a large amount of expensive high-pressure 

steam. In this study, a PC based simulator for a styrene monomer reactor has been introduced. The mathematical 

kinetic model for an adiabatic radial-flow styrene monomer reactor has been used as a first principle model. A 

neural network model has been developed for the catalyst deactivation model. Consequently these two models 

are combined for simulation and optimization of the SM reactor. Some examples are tested with this simulator 

and the potential usages of this program are investigated.

System Description

Fig. 1. shows the adiabatic radial flow reactor which is the target process in this study. In this SM reactor, three 

major competing reactions((1)~(3)) and three side reactions((4)~(6)) are known.

C6H5CH2CH3↔C6H5CHCH2 +H2              (1)

C6H5CH2CH3→C6H6 +C2H4                        (2)

C6H5CH2CH3 +H2→C6H5CH3 + CH4        (3)

H2O +
1
2

C2H4→CO+ 2H2                            (4)

 H2O + CH4→CO+ 3H2                                (5)

H2O + CO→CO2 +H2                              (6)

Hybrid Modeling of SM Reactor

1. First Principle Model

The kinetic model for the reactions is shown below.

Reaction amounts in reaction j is fj.
f1 = Φk1 (PEB − PSMPH2/KP ) , f2 = Φk2PEB, f3 = Φk3PEBPH2 , f4 = k4PH2O

PET, f5 = k5PH2O
PME, 

f6 = k6
P

T 3
PH2O

PCO                      (7)

Reaction amounts of components i is fi.

fi = Σ
j= 1

6

ν ijfj                (8)

Reaaction rate constant

Fig. 1 Current adiabatic radial flow reactor
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ki = ki0exp








− Ei

RT
                     (9)

The governing equations are formulated like below.[5]

Mass balance

dgi

dr
=
1
F







2πrLΣ
j= 1

m

fijMWi  , Σ
i= 1

NC

gi = 1    (10) 

Energy balance

dT
dr

= 2πrLΣ
j= 1

m

(−∆Hj )fj/ (FCP )             (11) 

Pressure drop

dP
dr

=
Pout − Pin

Rout − Rin
                                          (12)

2. Neural Network Model

The neural network model consists of a set of processing units called neurons, connected to one another. The 

neural network in thisstudy is a feed-forward network with one hidden layer, five input variables and one output 

variable. By adjusting parameters in the coupling between neurons, the network is capable of learning from a set 

of numerical data corresponding to the input and desired output.[6] Because of the time-varying characteristics 

of catalyst activity, the recurrent neural network is used in this hybrid model.

The input variables are Temperature (T (k-1)), Feed rate (F (k-1)), Partial pressure of steam in feed (PSTM 

(k-1)), Feed flowrate of ethylbenzene(EB) in feed (FEB (k-1)), Deactivation factor at time point k-1  ((k-1)) 

The output variable is Deactivation factor at time point k ((k))

3. Hybrid Model

After training, the proposed neural network model supplies the catalyst deactivation factor (Φ) at any operating 
conditions. Mass balance, energy balance and pressure drop equations can be solved using given plant data. 

From these equations, we can obtain reactor output data such as temperatures and composition of the product 

from each reactor. The structure of the hybrid model couples the first principle model and the neural network 

model.

Simulation Results

The proposed hybrid model is well fitted with the real plant data. Fig. 2 compares a real plant data with 

simulation results using predicted catalyst deactivation factor (Φ). These figures show the performance of 
styrene monomer and ethylbenzene that are the main materials of this process. The simulation results show good 

performance within error. The simulation results show good performance of 0.4% relative error, compared with 

1.7% relative error of the first principle model [7].

a) Reactor 1 b) Reactor 2 

Fig. 2 Comparison of simulation data and real data of reactors

Optimization of Operating Conditions

1. Problem formation
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The objective function for optimization is the profit of the styrene monomer process.

(Profit)=(Product sales)-(Variable cost)-(Fixed cost)                                                                                      (12)

Objective function     

Profit = Pr1Fg1 + Pr3Fg3− PrrawF −
P rNTH

C1
[F (Ti nR2− ToutR1 )Σ

i

NC

(Cpigi ) + Cp10Fg10 (Ti nR1− C2 )]− C3

                                                             (13)

Equality Constraints

f1 = Φk1 (PEB − PSMPH2/KP ) , f2 = Φk2PEB , f3 = Φk3PEBPH2 , f4 = k4PH2O
PET , f5 = k5PH2O

PME, 

f6 = k6
P

T 3
PH2O

PCO , ki = ki0exp








− Ei

RT
, 

dgi

dr
=
1
F







2πrLΣ
j= 1

m

fijMWi  , Σ
i= 1

NC

gi = 1, 

dT
dr

= 2πrLΣ
j= 1

m

(−∆Hj )fj/ (FCP ) , 
dP
dr

=
Pout − Pin

Rout − Rin
, Φ = Φ (t, F,X10 , X1, P )                         (14)

Inequality Constraints

600 Tin R2 650 , 600 Tin R1 650 , 0.5 g10 0.63 , 0 gi 1                                       (15)

Products of this process are styrene monomer and toluene. But the productivity of toluene is not important factor 

because productivity of toluene is much smaller than the productivity of styrene, while the prices are almost the 

same. Variable cost contains the cost for steam production and raw material cost. To keep the feed at a fixed 

temperature, steam cost for reactor 1 and naphtha cost for preheater of reactor 2 are needed. Variable cost 

increases as the operating temperature increases. Fixed cost, raw material prices and empirical equations for 

profit calculation are quoted from the real plant.

2. Single variable optimization

To determine the optimum trajectory of each operating variable, the other variables except one operating variable 

are remained constant during the whole operating horizon. Fig. 3 shows results for single variable optimization.

  

          (a) S/O Ratio                 (b) Tin of R1                    (c) Tin of R2

                          Fig. 3 Optimization Results for single variable

To simplifythe optimization problem of the multi operating 

variables, a mathematical equation form, (10) was selected

y = a1Log (t+ C1 )a2t
2 + a3t+ a4 +

a5
t+ C2

    (10)

In this equation, y is an operating variable and t is DOS(days on 

stream). And a1~a5 are variables and C1 and C2 are constants. The 

fitted variables a1~a5 in each equation are shown in table 3

3. Multi-Variable Optimization

Results of previous section are single variable optimization because variables become numerous when using 

neural network method as time goes by. In this section, threevariables are optimized using previously fitted 

Table. 1 Fitting results

y S/O ratio TinR1 TinR2

a1 -0.4618 44.9057 45.5467

a2 -6.126E-8 6.58E-5 3.10E-5

a3 1.307E-4 -0.09028 -0.07295

a4 3.2464 548.339 547.145

a5 1.0072E-2 1.6088 1.5644

error 0.077% 0.016% 0.017%
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equations. To reduce the complexity of multi variable optimization problem, the proposed equations are used. 

Since the number of time dependent variables is constant, this problem can be solved easier and more stable than 

the optimization which changes all variables.

Fig. 4 shows optimization results. As shown in Fig. 4, S/O ratio should be increased slowly and inlet temperature 

of each reactor should be increased. The optimum profit is 65.2 108won/yr while the current profit is 

52.0 108won/yr.

                                  (a) S/O Ratio                                                           (b) Tin of R1 and Tin of R2

Fig. 4 Profile optimization results and current operating data

Concusion

The hybrid model combining the first principle model with neural networks has been developedfor an adiabatic 

radial-flow dehydrogenation reactor in the styrene monomer production process. The neural network model has 

predicted the catalyst deactivation factors and the first principle model calculates the reactor outlet data.

From simulation data, the maximum profit of this process has been calculated using real prices. Optimum 

trajectories of all operating variables have been proposed.
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