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Introduction 
There can be a bunch of measurements in a process, for instance of activated sludge process, BOD, 
COD, temperature, SVI, DO, MLSS, turbidity, color, etc. Among the measurements some are easily 
measurable while the others are not, e.g. BOD needs 5 days while DO for every minute. Multivariate 
regression method is favorable candidate to overcome the time mismatch. If there is a relation between 
the readily and hardly measurements, combination of the handies can be used to predict the nuisances. 
This research suggests a probabilistic method for the regression in which holds two critical concepts: 
the latent variable called hidden, caused, principal component or factor to represents condition of the 
process; and the probabilistic reasoning to interpret the regression results. Combining them enable 
engineers to analyze the process by substitution the headaches for handies. 

Theory 
Let’s consider the standard regression formula as Eq. (1). 

y = cT⋅z + v  (1) 

where regressor variable z ∈ℜL ~ N (0, Σz) and response variable y ∈ℜ1 ~ N (0, λy) are assumed. The 
best linear unbiased estimator (BLUE) of c is the least-square estimator (LSE). 

cT
LS = y⋅ZT⋅(Z⋅ZT)–1 = y⋅Z+  (2) 

where y = {y(n)} and Z = {z(n)} for sample number n ∈{1,…,N}, and superscript ‘+’ represents the 
Moore-Penrose generalized matrix inverse. Note that it is the result of an optimization problem, i.e. cLS 
= argc min: λv = ‹(y – cT⋅z)2›. When the LSE was used, regression error is to be v ~ N (0, λv) since 

Gaussianity is closed for linear operation, and regressed y = cLS
T⋅z. Furthermore, if λv = ‹(y – cT

LS⋅z)2› ≤ 
δ⋅λy for δ ∈( 0, 1) then y is regressible by cT

LS⋅z with r2 = (1–δ) regressibility. Hence the absorption 
ratio of λy by cLS

T⋅z is expressed by Eq.(3). 

r2 = y⋅Z+⋅Z⋅y+  (3) 

where 0 ≤ r2 ≤ 1. Note that r2 = 1 indicates λv = 0, and hence no estimation errors. H-principal 
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emphasizes that cLS should be balanced between minimizing λv and is robust. The robustness of cLS is 
checked by the condition number of Z, denoted by ηZ, because Euclidian norm of it indicates ║cLS║E

2 
= y⋅ZT⋅(Z⋅ZT)–2⋅Z⋅yT. Thus it is reasonable to say that “y is regressible by cT

LS⋅z with r2 regressibility, 
and if ηZ ≤ ∆ for a large ∆, then cLS is robust”. 

Various multivariate calibration methods 

All measurements x ∈ℜP ~ N (0, Σx) can be used for the regressor variable z. It is the well-known 
multiple linear regression (MLR) method. Let’s denote the regression coefficient vector of x as b. 

Then b = cLS, and hence y = bT⋅x in MLR. Additionally, suppose a unitary matrix P that rotates z, and 
the rotation result is x, e.g. x = P⋅z where PT⋅P = IP. Then z can be recovered by latent score filter Q = 
P–1 = PT such as z = Q⋅x, and hence Eq. (4) represents. 

bT = cT
LS⋅Q (4) 

Suppose x ∈ℜP = P⋅z + e, where z ∈ℜL ~ N (0, Σz), e ~ N (0, Σe), PT⋅P = IL, and L ≤ P. It implies a 
high dimensional measurement vector is the results of a transform of a low dimensional latent vector. 

If (P–L) elements of which small variances are eliminated from x, the robustness of cLS is guaranteed, 

i.e. ηZ ≤ ∆. In this case, the hidden signals are recovered by Eq. (5). 

z = Q⋅x and e = W⋅x  (5) 

where Q = P+ = (PT⋅P)–1⋅PT = PT and W = (I – P⋅PT). Note that Σz = Q⋅Σx⋅QT and Σe = W⋅Σx⋅WT. 
Therefore y is regressible by bT⋅x with r2(L) = y⋅(PT⋅X)+⋅(PT⋅X)⋅y+ regressibility. Note that r2(i) ≤ r2(j) 
for i ‹ j, r2(P) = y⋅X+⋅X⋅y+, and L = argl min: | r2

desire – r2(l) |. (See also Figure 1).  

If an orthogonal basis set P were set, then Q, W, cT and bT are uniquely determined, and z and e are 
found from Q and W, respectively. There is an abundance methods to find P, e.g. P = any unitary 
matrix is MLR, P = {u(l)} is PCR, P = {g(l)} is PLS1, where u(l) and g(l) are the lth left singular vectors 

of X, and PLS basis vector of X, respectively. CPR finds P by input modifying Xα = U⋅Sα⋅VT to PLS 
algorithm, and it results MLR if α = 0, PLS1 if α = 1, PCR if α ≈ ∞. CSR obtains P by running PLS 
algorithm with approximated XL

J, it represents MLR if L = J = P, PLS1 if L = P, PCR if L = J. Refer 
to [1]. 

PPCR calibration method 

Probabilistic principal component regression (PPCR) has its foundation on probabilistic PCA (PPCA) 

proposed by [2]. It has a model that x = P⋅z + e, where z ~ N (0, I) and e ~ N (0, λ⋅I). PPCA seeks to 

find the most probable parameter set θ = {P, λ} in the model under given experience X by the 
expectation and maximization (EM) algorithm [3]. In brief, EM is an iterative algorithm that 

maximizes the complete data log likelihood function. Let’s denote log likelihood of the ith θ as L(θi ) = 
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log{P (X |θi)}, and its difference for a new estimate as ∆L = L(θ ) – L(θi ). Then ∆L(θ ) = log∫ P (z | 
X,θi )⋅P (z, X |θ )⋅P (z, X |θi )–1 dz in which contains the probability density information of latent 
variable. EM optimize the lower bound of ∆L(θ ), that is Q(θ ) =∫ P (z | X,θi )⋅log{P (z, X |θ )⋅P (z, X 
|θi )–1} dz, instead of ∆L(θ ) itself since 0 = Q(θi |θi) ≤ Q(θi+1|θ i ) ≤ L (θi+1) – L (θi ) = ∆L. It is the 
reason that EM can never decrease the log likelihood as iteration proceeds. The optimum is calculated 

by both solving (∂/∂P)⋅Q(P, λ) = 0 that results Eq.(6.1), and (∂/∂λ)⋅Q(P, λ) = 0 which produces 
Eq.(6.2) iteratively. 

P = X⋅ZT⋅(N⋅λ⋅M + Z⋅ZT)–1  (6-1) 

λ = (P⋅N)–1⋅Tr(XT⋅E)  (6-2) 

where M = (PT⋅P+λ⋅I)–1, Z = M⋅PT⋅X and E = (I–P⋅M⋅PT)⋅X. EM also results two posteriors, i.e. z|x ~ 
N (M⋅PT⋅x, λ⋅M) and e|x ~ N ({I–P⋅M⋅PT}⋅x, λ⋅ P⋅M⋅PT). So, Eq.(7) is obtained. 

z = M⋅PT⋅x and e = {I–P⋅M⋅PT}⋅x (7) 

Therefore Q = M⋅PT and W = (I – P⋅M⋅PT). In case of PPCR, y is regressible by bT⋅x with r2(L) 
regressibility, where r2(L) = y⋅(M⋅PT⋅X)+⋅(M⋅PT⋅X)⋅y+, and here ηZ = 1. 

Suppose a new measurement set {x, y} is obtained from the process. Is y regressible by bT⋅x ? If e = 
W⋅x ~ N(0, λ⋅I) then x follows the PPCA model. Therefore y is expected to be regressible by bT⋅x with 
α level of significance. Eq.(8) is the test statistics for the regressibility of y. 

║e║M
2 ∈ [ 0, χ–2

(1–α; P) ) or λ–0.5⋅ep ∈ [Ns
–1

(0.5⋅α), Ns
–1

(1–0.5⋅α) ) ∀p (8) 

where ║e║M
2 = λ–1⋅x T⋅WT⋅W⋅x , and ep = (W⋅x)p denotes the pth element of e. Additionally, in-control 

criterion can also be set as Eq. (9). 

║z║M
2 ∈ [ 0, χ–2

(1–α; L) ) or zl ∈ [Ns
–1

(0.5⋅α), Ns
–1

(1–0.5⋅α) ) (9) 

where ║z║M
2 = xT⋅QT⋅Q⋅x and zl denotes the lth element of z = Q⋅x . 

Results and Discussion 
Various types of multivariate regression methods can be unified by the block diagram shown in the left 
of Figure 1 not only the orthogonal basis methods but also the probabilistic method, i.e. PPCR. If the 

mixing matrix P were set, then all of the filters Q, W, cLS and b, and the recovered scores z and e are 
uniquely determined by Eq. (5) for the orthogonal methods, and Eq.(7) for the probabilistic method. 
Figure 2 shows an illustrative example for the PPCR with respect to the test set {x, y}. As shown in the 

figure, the main advantage of PPCR over the other methods is that it can suggest the regressibility for 
a new comer whether z is still the common factor both of x and y or not. If z is the common factor then 
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y can be expected to regressible, else irregressible. 

cLS
T

Q 

P 

z 

e 

x 

z

e

y

∑ 
bT 

y 

∑ v

W 

+
–

cT ∑ 
+

–

–
+

v 

Process  

(H) 

1 250 500 750

-1

0

1

1 250 500 750

-3

0

3

 

Figure 1: (Left) Block diagram for multivariate regression methods under the assumption that latent 
variable exists. If r2 is sufficiently large then it implies (H) block in the figure is correct, else there is 

another latent sources which were not measured by x. (Right) Data set for model calibration {x(n), y(n)} 
for n={1,…,500}, and validation {x(k), y(k)} for k={1,…,250}. 
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Figure 2: (Left) Regression results for the test set {x(k), y(k)} for k={1,…,250} by MLR, PCR, PLS1 and 

PPCR. Dotted arrow indicates the irregressible region. (Middle) Process monitoring result to check 

whether the process is under in-control or not, e.g. ║z║M
2 for the top and zl ∀l for the bottom. (Right) 

Regressibility test plot to check whether x is still useful to estimate y or not, where ║e║M
2 for the top 

and λ–0.5⋅ep ∀p for the bottom. 
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