

# Spectroscopic Study of V<sub>2</sub>O<sub>5</sub> Supported on ZrO<sub>2</sub> and Modified with MoO<sub>3</sub>

<u>Si Hyon Kwon</u>, Ki Chul Seo, Young Il Pae<sup>\*</sup>, Jong Rack Sohn Department of Industrial Chemistry, Kyungpook National University <sup>\*</sup> Department of Chemistry, University of Ulsan

### **INTRODUCTION**

Vanadium oxides are widely used as catalysts in oxidation reactions, e.g., the oxidation of sulfur dioxide, carbon monoxide, and hydrocarbons[1]. Much research has been done to understand the nature of active sites, the surface structure of catalysts as well as the role played by the promoter of the supported catalysts, using infrared (IR), X-ray diffraction (XRD), electron spin resonance (E.S.R) and Raman spectroscopy[2]. This paper describes spectroscopic study of vanadium oxide supported on zirconia and modified with  $MoO_3$ . The characterization of the samples was performed by means of solid-state <sup>51</sup>V nuclear magnetic resonance(<sup>51</sup>V NMR) and Fourier transform infrared (FTIR).

## **EXPERIMENTAL**

Precipitate of  $Zr(OH)_4$  was obtained by adding aqueous ammonia slowly into an aqueous solution of zirconium oxychloride(Aldrich) at room temperature with stirring until the pH of mother liquor reached about 8. The catalysts containing various vanadium oxide content and modified with MoO<sub>3</sub> were prepared by adding  $Zr(OH)_4$  powder into a mixed aqueous solution of ammonium metavanadate (NH<sub>4</sub>VO<sub>3</sub>) (Aldrich) and ammonium molybdate [(NH<sub>4</sub>)<sub>6</sub>(Mo<sub>7</sub>O<sub>24</sub>)(4H<sub>2</sub>O) (Aldrich) followed by drying and calcining at high temperatures for 1.5 h.  $3V_2O_5$ - $15MoO_3/ZrO_2(773)$  indicated the catalyst containing 3 wt% V<sub>2</sub>O<sub>5</sub> and 15 wt% MoO<sub>3</sub> calcined at 773 K. FTIR absorption spectra of V<sub>2</sub>O<sub>5</sub>-MoO<sub>3</sub>/ZrO<sub>2</sub> powders were measured by KBr disk method over the range 1200-400 cm<sup>-1</sup>. <sup>51</sup>V NMR spectra were measured by a Varian Unity Inova 300 spectrometer with a static magnetic

field strength of 7.05 T.

#### **RESULTS AND DISCUSSION**

Fig. 1 shows IR spectra of  $V_2O_5$ -15MoO<sub>3</sub>/ZrO<sub>2</sub> (773) catalysts with various  $V_2O_5$  content calcined at 773 K for 1.5 h. Although with samples below 15 wt % of  $V_2O_5$ , definite peaks were not observed, the absorption bands at 1022 and 818 cm<sup>-1</sup> appeared for  $15V_2O_5$ -15MoO<sub>3</sub>/ZrO<sub>2</sub>,  $20V_2O_5$ -15MoO<sub>3</sub>/ZrO<sub>2</sub>,  $25V_2O_5$ -15MoO<sub>3</sub>/ZrO<sub>2</sub> and pure  $V_2O_5$  containing high  $V_2O_5$  content. The band at 1022 cm<sup>-1</sup> was assigned to the V=O stretching vibration, while that at 818 cm<sup>-1</sup> was attributable to the coupled vibration between V=O and to V-O-V. Generally, the IR band of V=O in crystalline  $V_2O_5$  showed at 1020-1025 cm<sup>-1</sup> and the Raman band at 995 cm<sup>-1</sup>[3]. This observation suggests that vanadium oxide below 15 wt % is in a highly dispersed state.



Fig. 1. Infrared spectra of  $V_2O_5$ -15MoO<sub>3</sub>/ZrO<sub>2</sub> (773) catalysts with different  $V_2O_5$  contents.



Fig. 2 shows IR spectra of  $20V_2O_5$ -15MoO<sub>3</sub>/ZrO<sub>2</sub> catalysts calcined at 673-1173 K for 1.5h. Unlike  $3V_2O_5$ -15MoO<sub>3</sub>/ZrO<sub>2</sub> and  $10V_2O_5$ -5MoO<sub>3</sub>/ZrO<sub>2</sub> catalysts, for  $25V_2O_5$ -15MoO<sub>3</sub>/ZrO<sub>2</sub> crystalline  $V_2O_5$  appeared at a lower

8 2 2002

calcination temperature from 673 K to 873 K and consequently V=O stretching band was observed at 1022 cm<sup>-1</sup>. This is because  $V_2O_5$  loading exceeding the formation of monolayer on the surface of  $ZrO_2$  is well crystallized. However, at 973 K all  $V_2O_5$  reacted with  $ZrO_2$  and changed into  $ZrV_2O_7$  so that V=O stretching at 1022 cm<sup>-1</sup> disappeared completely, as shown in Fig. 2.

The solid state <sup>51</sup>V NMR spectra of  $V_2O_5$ -MoO<sub>3</sub>/ZrO<sub>2</sub> catalysts calcined at 773 K followed by exposing to air are shown in Fig. 3. There are three types of signals in the spectra of catalysts with varying intensities depending on  $V_2O_5$  content. At low loadings up to 10 wt%  $V_2O_5$  a shoulder at about -260 ppm and intense peak at -590 ~ -650 ppm are observed. The former is assigned to the surface vanadium-oxygen structures surrounded by a distorted octahedron of oxygen atoms, while the latter is attributed to the tetrahedral vanadium-oxygen structures[4,5].

Increasing the  $V_2O_5$  content on the zirconia surface changes the shape of the spectrum to a rather intense and sharp peak at about -300 ppm and a broad low-intensity peak at about -1250 ppm, which are due to the crystalline  $V_2O_5$  of square pyramid coordination[4]. These observations of crystalline  $V_2O_5$  for samples containing high  $V_2O_5$  content above or equal to 15 wt% are in good agreement with the results of the IR spectra in Fig. 1. Moreover, the increase in  $V_2O_5$  content resulted in the appearance of an additional signal with a peak at -800 ppm. Different peak positions normally indicate the differences of the spectral parameters and are observed due to different local environments of vanadium nuclei[5]. Thus species at -590 ~ -650 ppm and -800 ppm can be attributed to two types of tetrahedral vanadium complexes with different oxygen environments.

The spectra of  $20V_2O_5$ -15MoO<sub>3</sub>/ZrO<sub>2</sub> containing higher vanadium oxide content than monolayer loading and calcined at various temperatures are shown in Fig. 4. Unlike  $3V_2O_5$ -15MoO<sub>3</sub>/ZrO<sub>2</sub> for  $20V_2O_5$ -15MoO<sub>3</sub>/ZrO<sub>2</sub> calcined even at lower temperatures (773 K) a sharp peak due to crystalline  $V_2O_5$  appeared at -300 ppm together with peaks at -800 ppm due to the tetrahedral surface species. However, for samples calcined at 873 K, in addition to a peak at -300 ppm due to crystalline  $V_2O_5$ , a sharp peak at -800 ppm due to ZrV<sub>2</sub>O<sub>7</sub> compound appeared.





Fig. 3. Solid state  ${}^{51}$ V NMR spectra of V<sub>2</sub>O<sub>5</sub>-15MoO<sub>3</sub>/ ZrO<sub>2</sub>(773) catalysts with different V<sub>2</sub>O<sub>5</sub> contents.



### **CONCLUSIONS**

On the basis of the results of FTIR, solid state  ${}^{51}$ V NMR and XRD, at low calcination temperature of 773 K vanadium oxide up to 10 wt% was well dispersed on the surface of zirconia. However, high V<sub>2</sub>O<sub>5</sub> loading (equal to or above 15 wt%) exceeding the formation of monolayer on the surface of zirconia was well crystallized.

### **REFERENCES**

- 1. Lakshmi, L.J.; Ju, Z.; Alyea, E. Langmuir, 15, 3521 (1999).
- 2. Busca, G.; Elmi, A. S.; Forzatti, P. J. Phys. Chem. 91, 5263 (1987).
- 3. Bjorklund, R.B.; Odenbrand, C.U.I.; Brandin, J.G.M.; Anderson, L.A.H.; Liedberg, B. J. Catal. 119, 187 (1989).
- 4. Eckert, H.; Wachs, I.E. J. Phys. Chem. 93, 6796 (1989).
- 5. Reddy, B.M.; Reddy, E.P.; Srinivas, S.T.; Mastikhim, V.M.; Nosov, N.V.; Lapina, O.B. J. Phys. Chem. 96, 7076 (1992).