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Introduction

In general, the modeling and control of polymerization reactors are difficult tasks for several reasons. First, these reactors often exhibit highly interactive nonlinear dynamic behavior. A second challenge is that the first-principles model for a polymerization reactor may contain a large number of kinetic parameters. Because obtaining these parameters from lab scale test and pilot-plant work can be a very time-consuming endeavor and in addition, there may be processes for which a full understanding of the kinetic mechanism is not available, it may be advantageous to use a model structure whose parameters may be identified from input-output data. Such models describing the nonlinear dynamics range from general functional series-based models to models obtained from linear system identification utilizing the Hammerstein or Wiener model (Wigren, 1994). 

A Wiener system is given by the cascade interconnection of a linear time-invariant system with a static nonlinearity and is particularly useful in representing nonlinearities of a process without introducing the complications associated with general nonlinear operators. In the literature, the problem of Wiener model identification has been mostly analyzed in the prediction error framework. More recently, however, Westwick and Verhaegen (1996) proposed subspace based approach making use of the PI MOESP (Past Input MIMO Output-Error State Space) method for the estimation of the system matrices of the linear part. On the basis of these results, they obtained the model structure and the initial parameter estimates of the Wiener model. Verheagen (1998) applied the Wiener model to identification of the temperature-product quality relation in a multi-component distillation column.

Continuous Polymerization Reactor Model
Here, we consider a continuous solution polymerization reactor system of methlymethacrylate (MMA) using benzoylperoxide (BPO) as the initiator and ethlyacetate (EA) as the solvent. The reaction kinetics are assumed to follow the free-radical polymerization mechanism including chain-transfer reactions to both solvent and monomer. The kinetic parameters are determined using the parameter estimation techniques. and the gel effect is taken into account by the empirical correlations for the gel and glass effects proposed by Schmidt and Ray. The detailed correlations and other physical properties are presented in Ahn et al. (1998).

 We can derive the differential equations from the mass balances of various species in a polymerization reactor (Ahn et al, 1998).
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Here I, M, and S represent the concentrations of initiator, monomer and solvent, respectively, and subscript f denotes the feed condition. Also, qf is the feed flow rate and q is the overflow rate which makes the reactor level constant. The symbol f indicates the initiator efficiency. In addition, Gk and Fk denote the k-th moments of living and dead polymer concentrations, respectively, and are defined as follows :
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We also consider the energy balances for reactor and jacket, and use the equation for the volume change of the reaction mixture to calculate q (Ahn et al, 1998). 
Wiener System Identification Problem

 We shall assume that the system to be identified may be described by the following Linear Time-Invariant (LTI) state space model :
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where 
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 The measurement equation of the output is given by the expression :
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where 
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 The Wiener system identification problem is now stated as follows. Let the following data sequence of input/output (i/o) data for the system (12-13) be given by
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and assume that the input sequence 
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 is sufficiently persistently exciting as defined in Verhaegen (1993) and statistically independent from the perturbation 
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, the task is to find (a) the order of and (b) a statistically consistent estimate of the LTI state space model and the initial conditions (up to a similarity transformation), and (c) the dead-time d as well as (d) an estimate of 
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For the identification of a continuous polymerization rector, we use the input-output data obtained from numerical simulations of the nonlinear model for the continuous polymerization reactor. In this study, we use the inlet temperature of the reactor jacket Tjin (from 65oC to 75oC) and the feed flow rate qf (from 5 ml/min to 15 ml/min) as the test inputs. 

The systematic procedure to identify Wiener system

 Identification is executed with reference to the systematic procedure to identify Wiener system proposed by Verheagen (1998). In order to perform the first step of this strategy in a systematic manner, one needs to evaluate the model accuracy measure for all different combinations of feasible model orders and dead-times. For this purpose we use the Variance Accounted For (VAF) index. The range of the VAF index is between 
[image: image24.wmf]-¥

and 100%. Instead of this time-consuming manner, we use subspace identification to get some insight about the order of the underlying system. We first identify the LTI part of the Wiener system, using the PI (Past Input) subspace identification scheme as if the nonlinearities were not present and determine the order of the LTI system and the dead-time. 
  Singular values obtained by the PI subspace identification scheme are shown in Figure 1. We observe a gap between the second and third singular values indicating that the underlying system is of order 2. 
 A MIMO static nonlinear function between the LTI outputs and the measured outputs is estimated on the basis of Tchebychev polynomials as follows :  
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Since the input used for identification is not Gaussian, PI-MOSEP may give biased estimate of the linear part. Therefore, we now need to use a nonlinear optimization technique to find the right model. Let 
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 denote the parameters that specify the linear time-invariant system. If 
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 represents the predicted output based on the coefficients 
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, then we can define the following full parameter optimization problem:
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From the previous step we can specify constraints on the parameter values providing the iterative optimization with good initial estimates. The output of the model that resulted from solving the optimization problem (16) is plotted in Figure 2. The VAF indices are 93.85 % and 97.70 %. 

Concluding Remarks

A mathematical model is developed to describe the relationship between the manipulated variables (e.g. jacket inlet temperature and feed flow rate) and the important qualities (e.g. conversion and weight average molecular weight (Mw)) in a continuous polymerization reactor. The subspace-based identification method for Wiener model is used to retrieve from the discrete sample data the accurate information about both the structure and initial parameter estimates for iterative parameter optimization methods. The comparison of the output of the identified Wiener model with the outputs of a non-linear plant model shows a fairly satisfactory degree of accordance.  
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Figure 1. Singular values obtained by using 5 sets of data.
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Figure 2. Comparison between the true outputs and the outputs of the identified Wiener model using iterative optimization based on Tchebychev polynomial. 
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