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Introduction

Most of the industrial process control system are composed of the conventional
PID(Proportional-Integral-Derivative) controller despite of a number of the advanced control
strategies have been proposed. As a representative of many proposed methods for automatic
tuning of the PID controller, P-controlier method(Yuwana and Seborg, 1982) which
identifies the first-order plus time delay model can be stated. This method involves the on-
line closed-loop identification technique based on a single experimental test. Various
modifications and extensions of the P-controller method have been proposed(Jutan and
Rodriguez(1984), Hwang and Chang(1987), Lee(1989), Chen(1989), Hwang(1993), Sung et
al.(1994), Hwang and Shiu(1994)).

However, since all the previous methods use the first order plus time delay model,
there is a structural limitation tc approximate the broad range of the closed-loop response
frequency and the performance of control is not satisfactory. Lee(1990) proposed the closed-
loop identification method using the second-order plus time delay model employing a Taylor
series to treat time delay term using ultimate data matching technique. Hwang(1995)
proposed the identification method using the second-order plus time delay model under the
arbitrary test input signal.

All the above identification techniques using the P-controller method have a strong
constraint that is, the gain( K_ ) of P-controller should be chosen very carefully not to
produce the overdamped response. And since the identification of the method parameters
relies on a few points of the controlled response which is usually contaminated with noise,
the accuracy of the identified model and the control performance can be degraded
significantly.

Zervos et al.(1988) and Dumont et al.(1989) proposed the PID controller tuning
method which identifies the process using a least squares method with a Laguerre series and
determines the optimal controller parameters by the iterative optimization. However, the use
of this method is confined with the application in off-line manner.

In this work, we propose a new on-line identification method which preserves the
advantages of the previous werks and avoids the above-mentioned shortcomings. The
approximation of the closed-loop response was made using Laguerre polynomials and least
squares method. And the second-order plus time delay model was derived by a simple model
reduction method based on the frequency data.
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On-Line Identification
Let’s consider the typical feedback control system as Fig 1. It is assumed that the
process transfer function, G, (s), is unknown. And the closed-loop transfer function, G, (s),

is as follows.

y(s) _ G, (S)Gp (s)
Vp(s)  1+G()G,(s)
It is assumed that the test signal is the step change in set point whose magnitude is A4 .
From Eq(1), the open-loop transfer function, G, (s}, can be calculated. It is assumed that the

Gy (s) = M

controller is a proportional controller( G, (s) = K,).
s y(s
Gple) =T 2D @
K (A-5-y(s))
The steady-state gain can be estimated directly from the measurements of the steady-
state values of controlled variable and manipulated variable(i.e., K, = Yo
u

o

Since the Laguerre series converge to zero in L,[0,%) space, let’s introduce new
variable, y(s), when the P-controller with step set point change is used.

KK,
y(S)—)(S)—l 1<1< 3)

The new variable, y(s) means the deviation from the new steady-state value after the

step change in the set point. Then we can approximate the closed-loop response which has a
zero steady-state value using the linear combination of Laguerre series via a simple least
squares technique.

M
Minzmi.zeZ(y(t,) — 5(1,)) 4)
Aty i=1

where y(¢;)is the i-th measurement of the deviated controlled variable from steady-state

value. and $(¢;) denotes the approximation using the N Laguerre polynomials at i-th
sampling time as follows.

~p! dn 1
() = t)  where, | (t
) = Z] 1,( () =2p i
where a,,l,(t) is the n th coefficient of Laguerre polynomlal and Laguerre polynomial in
time domain respectively and p is the time scale parameter.
Let’s introduce the following vectors such as Y( M x1), & (N x1) and matrix

t" Ie—2pl) (5)

O(NxM)
y(t) o' (1) (1) a
- r
v o Y(:fz) o= @ flz) L o) = lzf’) = a:2 6)
Y(tp) o (th) Iy (1) ay

where M denotes the number of measurements and N is the number of Laguerre series
Then Eq.(4) can be rewritten in a simple form as follows



Theories and Applications of Chem. Eng, 1996, Vol. 2, No. 1 99

Minimize]¥ - o4|* 7

The unique minimum of Eq(7) can be found when 8= (@ ' ®)'®’Y . From Eq(2),
(3), the process transfer function can be rewritten in the form of rational polynomials with
the known coefficients.

K Kp
s (Za,,l,,<s>+ i)

G,(s)= = ®)

K (A-s- (Z )

n
' 1<1<
n=1

However, the obtained high order process transfer function should be reduced for the
autotuning of PID controllers. We present a simple model reduction technique by Sung and
Lee(1995) based on the frequency data. Let’s consider the second-order plus time delay
model which has the following form.

Ke'"

GIM(S) = - (9)
T,,,Zs +2&,t,5+1

The amplitude ratio of the model is given by Eq.(10).
| K™ | K
2.2 - 3
S 428, mus 41, -1, 0% + (28,1 ,0)
The amplitude ratio of the high order process transfer function can be approximated
to that of the desired model transfer function using a simple least squares technique with

frequency response. The difference between the square of the amplitude ratio of the process
transfer function and that of model transfer function can be given

2

|GP(jw)| ((] B T’"zwz)z + (25,,,1',,,60)2 )2 - sz
((1 - Tmzwz )2 + (26"11'",&))2 )2

where ’Gp(ja),-)| is the amplitude ratio of the process transfer function, Eq.(9), which is

|G, (jo)| =

(10)

m

6,G0) -GG = (an

approximated with the Laguerre polynomials. Let’s define the numerator of Eq(11) as error
at the arbitrary frequency, e(w,), as following,

e(w,) = (K, -[G, G, } - 22&,2 - 05,26, o) 0 +2,'(G, o) ') (12)

While a rational approximation of the process with the time delay term requires the
iterative nonlinear optimization technique(Levy(1959), Sanathanan and Koerner(1963),
Seborg et al(1989)), we have the linear equation for unknown variables which can be solved
by a simple least squares technique. Using the result of least squares technique, we can easily

calculate time constant( r,, ) and damping factor( £, ) as follows.

K{/H‘) and gﬂl = i l+féL
2

Using the obtained time constant and damping factor, the time delay(8,,) can be

) (13)

calculated by the following simple phase angle relation.

tan2”' (-2¢,,1,0,1- z-mzw2 ) - AGP(-IG))

6, = (14)
(4]
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Conclusion

In this work, our main objective is to model the process dynamics in the second-order
plus time delay model which can be applied to the autotuning of PID controller directly in
SISO(Single Input-Single Output) system. In the approximation of the closed-loop response,
the Laguerre series are employed as was done in Zervos et al.(1988) and Dumont et
al.(1989). And a similar approach of Sung and Lee(1995)’s was made in that application of
least square method and frequency response data. In the present method, the test signal is not
restricted to the step change in the set point, so the other test signal such as pulse test can be
used according to the appropriate purpose. This present identification also can be extended
to the other control condition such as PI or PID controller. And this method does not use the
approximation for the time delay term such as Padé approximation. Several simulation
studies show that still preserving the flexibility and simplicity, the present method has the
better performance and robustness in the identification and control in comparison with the
previous methods.
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Fig. 1. Typical feedback control system



