Theories and Applications of Chem. Eng, 1995, Vol. 1, No. 2 175

2NE, A8
Fol gt et et

MULTIVARIABLE CONSTRAINED GENERALIZED PREDICTIVE CONTROL
OF A BINARY DISTILLATION COLUMN

Sun Ho Song, Young Han Kim
Dept. of Chemical Engineering, Dong-A University

Inroduction

Since the GPC had been introduced, a couple of constrained GPC techniques|1][2]
were developed for single-input/single-output(SISO) system. In this study, the SISO
control procedure is extended for multivariable system to apply to a binary
distillation column. The performance of the proposed control is compared with that
of the quardratic dynamic matrix control through rigorous simulation. In addition,
the property of tuning parameters is investigated to show the tuning guideline of the
control.

Process model

The studied process is methanol-water distillation system using a typical binary
distillation column and its rigorous model is used in the dynamic simulation. The
model consists of material and energy balances and equilibrium relation. The
material balances are of toval holdup and component holdup in the form of
differential equation. For the equilibrium calculation the van Laar equation is
employed. While pressure profile is assumed to be of linear distribution throughout
stages from the top to the bottom, nonlinear liquid hydraulic with the Francis weir
equation is employed in the calculation of liquid flow rate. Vapor holdup is
neglected owing to its small amount compared with liquid holdup.

Control algorithm
In the constrained generalized predictive control, the following multivariable
input-output model is used.

Al yk) =B @) u® + yyk) (1)
where A (q'l) =1I- Alq_1 - AQq_2 R
B(q!)=Bja! + By + - + Byg™

Also, y is controlled variable vector, top and bottom product compositions, and u is
input vector, reflux, steam and feed flow rates. The y, is unmodeled disturbance.
Among them, reflux and steam flow rates are manipulated variables and feed flow
rate is a measured disturbance. Though.the unmodeled disturbance is not customary
in adaptive control, it is utilized to eliminate persistent offset as used in the
dynamic matrix control(3].
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The initial parameters in A and B are found by the one-shot algorithm[4] and the
parameters are recursively updated using the recursive least squares method[5] while
implemented in control computation.

Multi-step prediction of output is available by successively applying Eq. (1).
However, the prediction is readily obtained using the following Diophantine
equation without tedious substitution.

L= BA+aE (2)
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Now the multi-step prediction of output using the parameters Ej and Fj is given
y(k+) = EjBu + ¢’ Fyy (3)

and it is put into the control objective function.
When the sum of predicted absolute error is minimized, the control objective of
an MIMO system can be formulated as

Ny Ng
I= 2% Qily -9 k)] + .5 T Reou (k1) (4)
i=1 j=N, " “lsp ! i=1 j=1 Y ! '

where Qi' and Ri' are output error and input weights, respectively.
In order to minimize the objective function with the linear programming, an
artificial variable is introduced and Eq. (4) is transformed as follows:

min. z (5)
s. t J < z
A u o < Auw < A umax
and u_. < u < Umax
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Constraints on input and input variation are largely decided by the physical
limitation of the process and they are often determined by the operator’s experience.
However, they are important tuning parameters in this control scheme and their
property is discussed in the next section.

Controller tuning

Many control parameters are involved in this control scheme. Among them the
numbers of prediction and control steps are major tuning parameters. In general,
the number of prediction steps is set to approximately the rise-time of output[6].
However, it is too large in this study, and therefore the prediction step number is
determined as three only considering the total number of model parameters and
their recursive estimation time. In the meantime, the number of the first prediction
step, Nl’ is related to the response delay and is taken as one since no significant
delay is observed in the output. The number of control steps is also set to three
after deliberating control cornputation time. It is also related to the movement of
manipulated variable, but the constraint on input variation has stronger influence
on control performance.

The maximum and minimum values of inputs are physically determined. In other
words, they are not adjustable tuning parameter in real application. In this study,
however, the limit values are taken as 120% and 80% of steady state values.
Maximum and minimum variations of input in single movement are adjustable for
the best performance and, in the practical application, field process operator has
knowledge on the determination of the limit from his experience. Similarly, trial
adjustment is conducted in this study and it is also observed that the constraint has
the most significant influence among various tuning parameters in control
performance. .

Weights, Qij and Ri" are other tuning parameters. The Q.. is an adjusting weight
among output errors and the Ri' is weight among inputs. Alfso, the latter is closely
related with limits of input variation as soft constraint. Moreover, weight between
output errors and inputs is determined by the ratio of Q.. and R... For the analysis
of the weights, input constraints in Eq. (5) are relaxedlil The property analysis in
closed loop system is adopted from the case of the quadratic control of the SISO
system[7].

The future input vector is directly computed from the minimization objective, Eq.
(4), and it is

u=(QG+R)"Q (ysp-1) (6)
where G and f is found from

y=Gu+f. (M)
Also, f(k)= T'u(k-1)+Fy k) . (8)
The first element in input vector of Eq. (6) is

i (k)=A; [ysp-Tu(k1l)-Fy] (9)

where A, is the first row of the coefficient matrix of Eq. (6). Two input vectors can
be combined and replaced into output vector using Eq. (1). In this case the
unmodeled error in the model is assumed to be zero.

®y=Aq¥sp (10)
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where ®=[L A, T]BLA +A [0, F].
The inverse of matrix B is not direct]Iy found in some cases where one or more sets
of parameters in Eq. (1) can be used to obtain a square B matrix.

The stability of the output tracking to the set point is determined by the roots of
the following characteristic equation of which the roots have to be located inside
unit circle for stable closed loop performance.

det[®] =0 (11)
The property of weights, Q.. and R.., is not explicitly explained by the stability
analysis, but numerical stud‘g/ shows 1marginal values of the weights. For instance,
when Ql' = 1 and Q2- = 3, the marginal highest value is 0.024 for R... In the
simulation study, the best performance was obtained with Ri' = 0.005 for ‘the case.
Note that input constraints are relaxed in this computation.

Results and discussion

Performance of the proposed control scheme is examined through the simulation
of a rigorous model of a binary distillation column. In order to compare the control
performance of this study, the quadatic matrix control with same tuning parameters
is used in the control simulation.

Conclusion

The constrained generalized predictive control for single variable system is
extended to a multivariable system and its performance is investigated by applying
in the control of a binary distillation column. Also, the property of tuning
parameters is examined to give tuning guideline.

Simulation study using rigorous model indicates that the proposed control scheme
gives satisfactory control performance in both set-point tracking and regulatory
control. In the control performance comparison with the quadratic dynamic control,
it is observed that the result of the GPC is better than that of the QDMC.
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