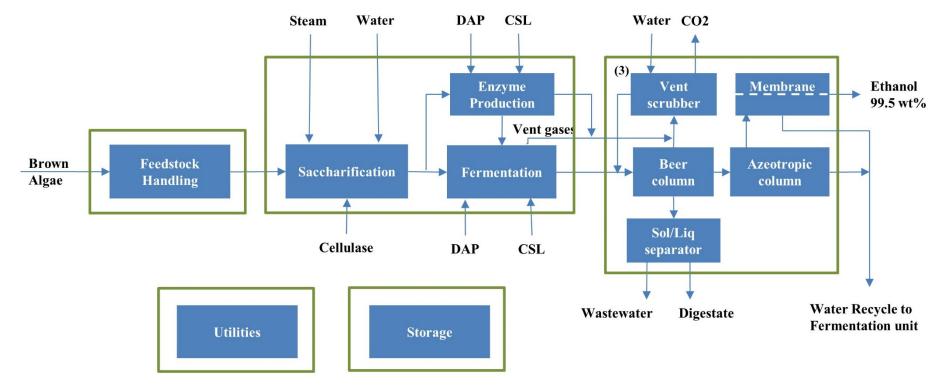


FELLIGENT SYSTEMS LABORATORY

Biochemical Conversion of Biomass

- Sugar Platform (SP) 1.
- Methane Platform (MP) 2.
- Volatile Fatty Acids Platform (VFAP) 3.


Conversion Routes

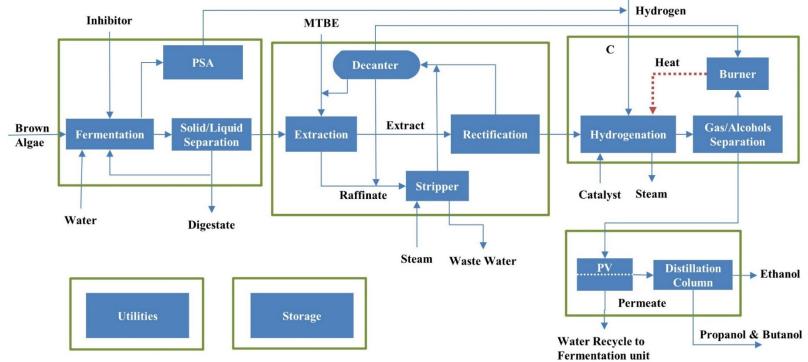
<u> LINTELLIGENT SYSTEMS LABORATORY</u>

Process Description: SP

- ✤ Saccharification Temperature: 48°C
- ✤ Fermentation Temperature: 30°C
- Solid Loading: 20 wt%
- Reported Yield Range: $0.22 0.28 \frac{\text{kg Eth}}{\text{kg dry}}$

- Saccharification: 2.67 days
- Fermentation: 2.67 days
- PV membrane permeate flux: 8.5 kg/m² h at 75°C, Selectivity>10,000 (Sato et al., 2011)

Fasahati, Woo, & Liu, Applied Energy (2015)


Conversion Routes

<u> LINTELLIGENT SYSTEMS LABORATORY</u>

Process Description: VFAP

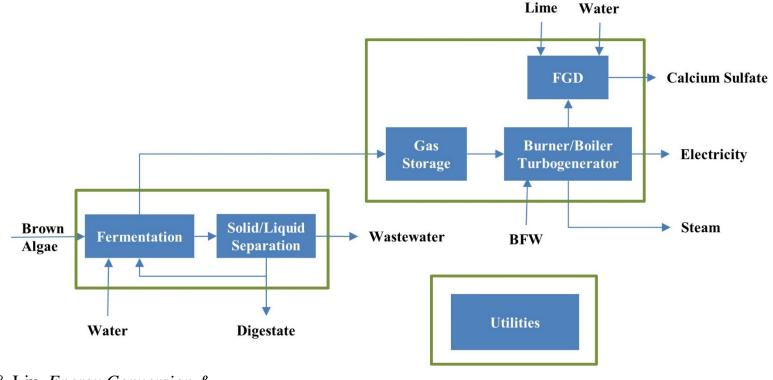
- ✤ Fermentation Temperature: 35°C (5 days)
- Solid Loading: 13 wt% (5% VFA conc.)
- Reported Yield Range $0.3 0.4 \frac{\text{kg VFA}}{\text{kg dry}}$

- ✤ VFA mol%: 67% AcAc, 22% PrAc, 11% BuAc
- ✤ VFA Rec.: 95%
- ✤ Hydrogenation conv.: 97% (290°C and 60 bar)
- PV membrane permeate flux: 8.5 kg/m² h at 75°C, Selectivity>10,000

Fasahati & Liu, *Energy* (2015) Fasahati & Liu, *Chem. Eng. Res. & Des.* (2015)

Conversion Routes

<u> LINTELLIGENT SYSTEMS LABORATORY</u>


Process description: MP

✤Fermentation Temperature: 35°C (10 days)

Solid Loading: 10 wt%

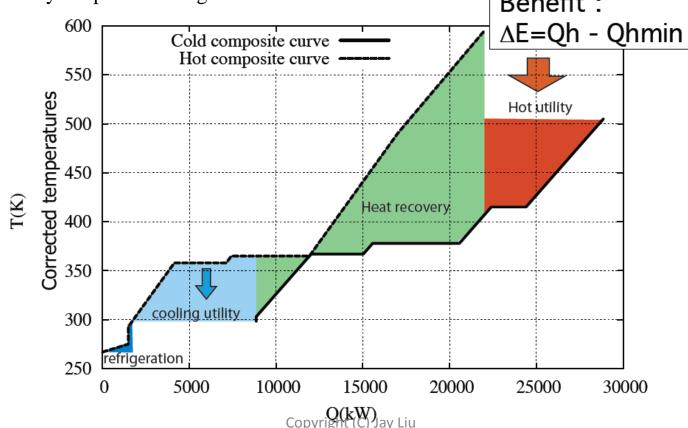
• Reported Yield Range: $0.23 - 0.3 \frac{m^3}{\text{kg VS}}$

♦ Net Electricity: 27,100 kW

Fasahati & Liu, *Energy Conversion & Management*, accepted (2016)

L INTELLIGENT SYSTEMS LABORATORY

Process Simulation


With experimental data from literature, all processes are rigorously simulated in Aspen Plus.

	SP	VFAP	MP	
Temperature (°C)	Saccharification: 48 Fermentation: 30	35	35	
Solid Loading	20 wt%	13 wt%	10 wt%	
Fermentation Time (days)	Saccharification: 2.67 Fermentation: 2.67	5	10	
Fermentation Yield	$0.25 \frac{\text{kg Eth}}{\text{kg dry}}$ Range: $0.24 \sim 0.28$	$0.35 \frac{\text{kg VFA}}{\text{kg dry}}$ Range: $0.3 \sim 0.4$	$0.265 \frac{m^3}{kg VS} = 0.174 \frac{kg}{kg VS}$ Range: $0.23 \sim 0.3 \frac{m^3}{kg VS}$	
Plant Scale	400, 000 ton dry/year			
Product	Ethanol: 12,400 kg/hr	Ethanol: 7,400 Prop. & But.: 6,100	Net Electricity: 27,100 kW	

Copyright (C) Jay Liu

Heat Integration

Heat integration analysis is performed separately for each process in order to minimize the utility requirements. An inventory of the heat demand and supply within the plant is made and ordered by temperature range.
Benefit :

Heat Integration

- LP steam at 164°C, MP steam at 186°C, and HP steam at 254°C are used as heating sources. Cooling demands at above 40°C are met by cooling water. Cooling below 40°C is required in the saccharification and fermentation reactors, as well as liquefaction of permeate and ketones, and production of ammonium bicarbonate, where chilled water (4-15 °C) and liquid propane (-20 °C) are used, respectively.
- ✤ Hot and cold streams are matched under the following criteria:
 - Matches between near streams (same plant section) are preferred;
 - A minimum temperature differences of 5°C, 10°C, 20°C, and 30°C are imposed for condensation, liquid-liquid, liquid-gas, and gas-gas heat transfer matches.

L INTELLIGENT SYSTEMS LABORATORY

Techno-economic analysis

A techno-economic model similar to the one developed in <u>NREL</u> for lignocellulosic biomass is used for economic assessments.

- **Start-up** period **three month** and **30 years** plant life.
- **Contingency 10%** of total project cost.
- ✤ 10% internal rate of return (IRR).
- **Working capital 5%** of total capital expense per year.
- ***** Tax rate 35% per year.
- ✤ Startup period
 - Revenues during start-up: 50%
 - Variable costs incurred during start-up : 75%
 - Fixed costs incurred during start-up : 100%
- Membrane cost : 1000 \$/m2 (US-DOE-NETL)
- ✤ Membrane replacement : every 5 year
- ✤ Ethanol price: 2.58 \$/gal (EIA, 2012)
- ✤ Butanol: 1.5 \$/kg (Tecnon, 2013)
- ✤ Electricity: 0.0984 \$/kWh (EIA, 2012)

- Depreciation method (recovery period) : 200% declining balance (7 years)
- **Chand: 6%** of **installed cost**.
- Salvage value: 0 M\$
- Construction period: One year
- Operating hours per period: **8000 h/year**

L INTELLIGENT SYSTEMS LABORATORY

Techno-economic analysis

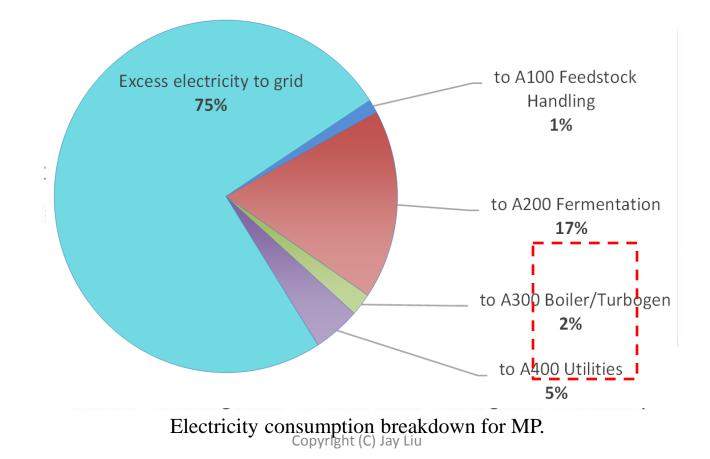
Fixed operating costs		Direct costs	% of installed costs
Labor cost	1.6% of total installed cost	Installed costs	100%
Maintenance cost	3.0% of total installed cost	Warehouse	4%
Property insurance and tax	0.7% of FCI		- -
		Site development	9%
Variable operating cost		Additional piping	4.5%
Biomass	Laminaria japonica	Indirect costs	% of total direct costs (TDC)
Cost of macroalgae cultivation	54.4 \$/ton (dry basis)	Prorateable costs	10%
Transport cost	13.6 \$/ton (dry basis)	Field expenses	10%
Total macroalgae cost	68 \$/ton (dry basis)	Home office and construction	20%
Hydrogenation catalyst	18.975 \$/lb catalyst	Project contingency	10%
LP steam at 164°C	12.68 \$/ton	Other costs	10%
Waste water	0.041 \$/m3		
Hydrogen	1.5 \$/kg		
Disposal of Ash	32 \$/ton		
Boiler Chemicals	5092 \$/ton		
МТВЕ	1100 \$/ton		
Process water	0.27 \$/ton		

Cost estimation

- ✤ Base year: 2012
- ✤ Chemical engineering plant cost index (CEPCI).

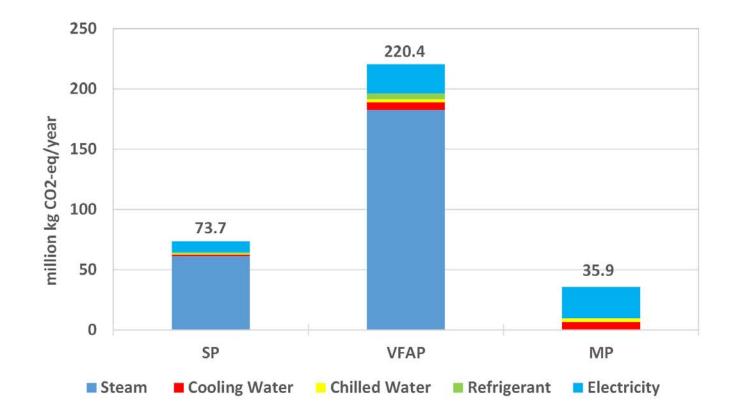
Item	Scaling Exp.	Year of Quote	Cost US\$	Inst. Fac.	Ref.
Hydrogenation reactor	0.56	2002	2,026,515	2.47	Phillips et al., 2007
Flash tank	0.7	2009	511,000	2.0	Humbird et al., 2011
Alcohols Separation Column	0.68	1996	525,800	2.1	Aden et al., 2002
Azeotropic Column	0.68	1996	525,800	2.1	Aden et al., 2002
Reboiler	0.68	1996	158,374	2.1	Aden et al., 2002
Condenser	0.68	1996	29,544	2.1	Aden et al., 2002
Pressure Filter	0.8	2010	3294700	1.7	Humbird et al., 2011
Fermentation Reactors	1.0	2009	844,000	1.5	Humbird et al., 2011
PSA unit	0.6	2002	4,855,471	2.47	Spath et al., 2005
Digesters	0.6	2012	6,450,000	1.1	Davis et al., 2013
Saccharification Tanks	0.7	2009	480,000	2	Humbird et al., 2011

<mark>⊻ intelligent systems laboratory</mark>


GHG Emissions calculation

- CO₂ emissions: calculated according to US EPA (Environmental Protection Agency).
- ✤ Natural gas was considered as fuel for provision of heat and steam.
- CO₂ emissions due to electricity consumption were calculated based on US annual output emission rates for electricity production.
- ✤ 80% boiler efficiency were considered for steam production.
- ✤ Compression refrigeration with 38°C condenser requires 1.31 kW/tonne at -18°C.
- Power requirement for cooling water and chilled water is obtained from Aspen Plus simulations.
- Emission factors were converted to CO₂ equivalent using 100 year global warming potential:

Gas	100-year GWP		
CH ₄	25		
N ₂ O	298		


Utility Costs

- ✤ Total utility costs: 11.6 (SP), 32.3 (VFAP), and 6.8 (MP) million\$/year
- The energy requirements of the MP is covered by part of electricity produced in the process.

GHG emissions

✤ CO₂ emissions: 73.7(SP), 220.4(VFAP), and 35.9(MP) million kg CO₂-eq/year.

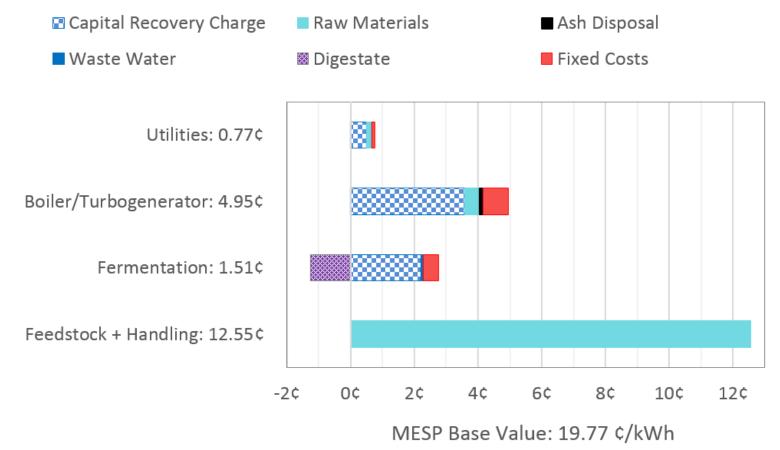
<u> LINTELLIGENT SYSTEMS LABORATORY</u>

Total Capital Investment

> TCI:, 84.7 (SP), 106.4 (VFAP), and 105.9 (MP) million\$

	SP (Million\$)	VFAP (Million\$)	MP (Million\$)	
Feedstock Handling	17.0	17.0	17.0	
Fermentation	21.2	23.1	18.5	
Extraction/Distillation	-	16.4	-	
Hydrogenation	-	4.1	-	
Boiler/Turbogenerator	-	-	30.0	
Distillation/Recovery	16.7	2.6	-	
Storage	3.1	3.5	-	
Utilities	1.4	3.9	4.1	
Total Installed Costs	42.4	53.6	52.6	
Total Direct Costs (TDC)	49.1	61.7	61.1	
Total Indirect Costs	29.4	37.0	36.7	
Fixed Capital Investment (FCI)	78.5	98.7	97.8	
Total Capital Investment (TCI)	84.7 Copyright (C) Jay Li	106.4	105.9	

NPV


	SP	VFAP	МР
TCI (mm\$)	84.7	106.4	105.9
Feedstock (mm\$/y)	27,2	27,2	27,2
Utility (mm\$/y)	11.6	32.2	0
Other Variable Cost (mm\$/y)	1.4	11.3	1.8
Fixed Operating Cost (mm\$/y)	2.3	2.9	3.0
Annual Manufacturing Cost	42.5	73.6	31.9
Ethanol (mm\$/y)	85.7	51.1	-
Propanol & Butanol (mm\$/y)	-	55.9	-
Electricity (mm\$/y)	-	-	21.3
Digestate (mm\$/y)	3.4	3.4	2.7
Total Annual Sales	89.1	110.4	24.0
NPV (mm\$)	216.7	140.0	-179.6

Ethanol price: 2.58 \$/gal; Butanol: 1.5 \$/kg; Electricity: 0.0984 \$/kWh; Biomass: 68 \$/ton

L INTELLIGENT SYSTEMS LABORATORY

Minimum Electricity Selling Price for MP

➤ MESP: **19.77** ¢/**kWh** to reach a breakeven point after 30 years of plant life.

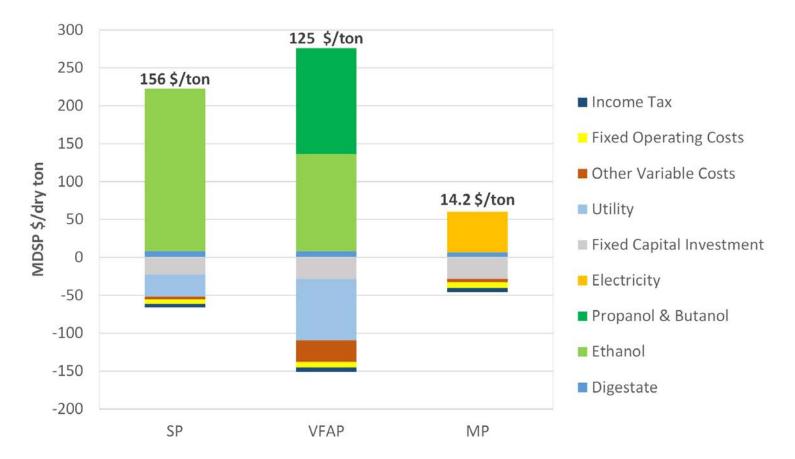
Cost contribution details from each process area to total MESP for MP

Copyright (C) Jay Liu

L INTELLIGENT SYSTEMS LABORATORY

Minimum Electricity Selling Price for MP

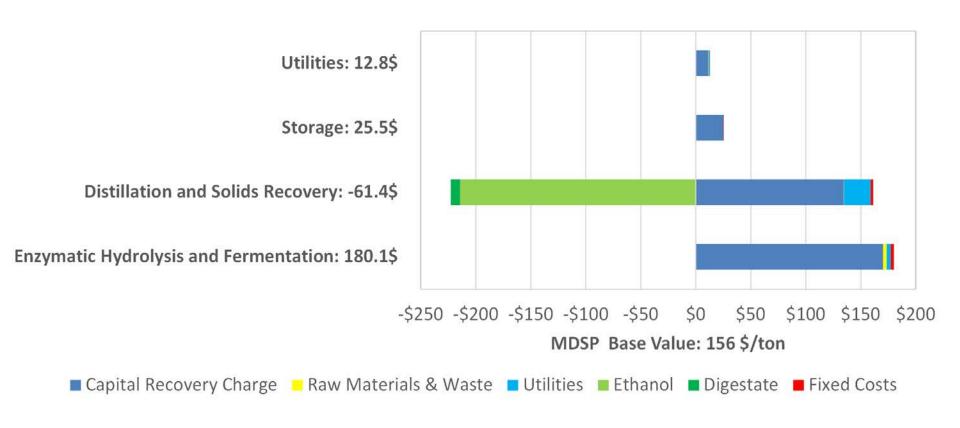
➤ MESP: **19.77** ¢/**kWh** to reach a breakeven point after 30 years of plant life.


Period	California	Arizona	Michigan	New York	Connecticut	Hawaii	Washington
2015	18.24	10.09	15.43	18.44	19.20	29.87	9.36

Average selling Price (¢/kWh) of Electricity for residential sector at 2015 (http://www.eia.gov/)

└ INTELLIGENT SYSTEMS LABORATORY

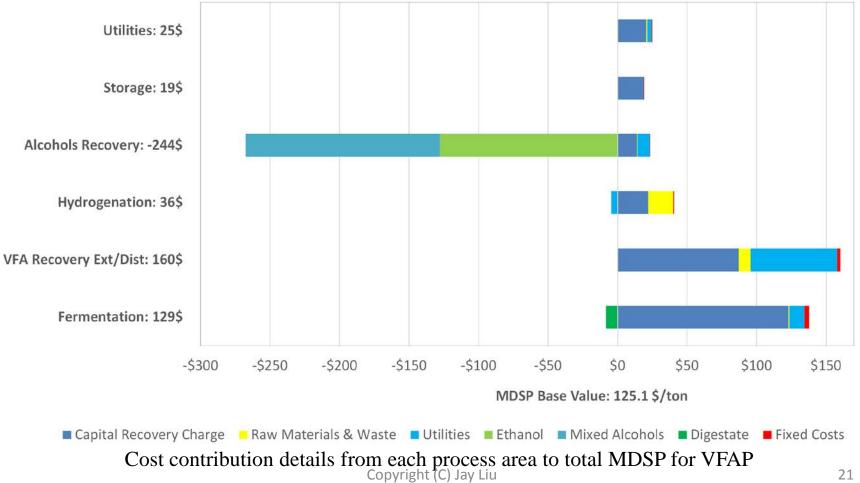
Maximum Seaweed Price (MSP)


✤ The MSP: 156 (SP), 125 (VFAP), and 14.2 (MP) \$/dry ton

the price of the feedstock at the plant gates (costs of cultivation, storage, and transportation)

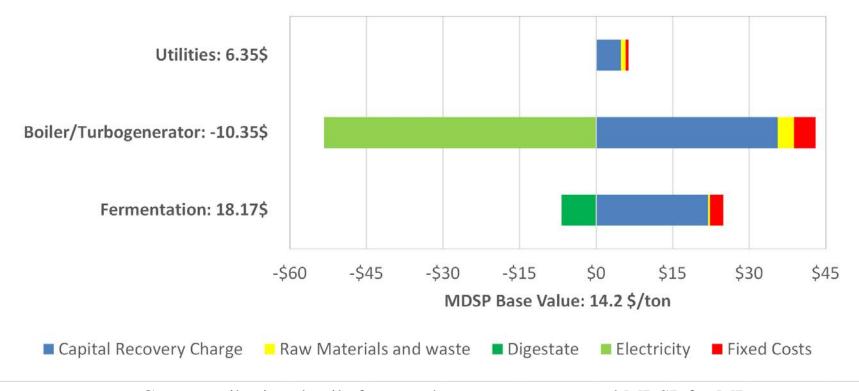
MSP of SP

Fermentation and distillation units have highest contribution.


Cost contribution details from each process area to total MDSP for SP.

Copyright (C) Jay Liu

ELLIGENT SYSTEMS LABORATORY


MSP of VFAP

✤ Fermentation and VFA recovery units and utility demands of VFA recovery have highest contribution.

MSP of MP

- ✤ Boiler/turbogenerator and fermentation unit has the highest contribution.
- Low MDSP comes from low electricity selling price (0.0984 \$/kWh).

Cost contribution details from each process area to total MDSP for MP Copyright (C) Jay Liu

Summary

- Brown algae are viable biomass resources for biofuel and bioenergy production.
- **SP** is economically **superior** over VFAP and MP in NPV and MDSP.
- In VFAP, high utility demands for VFA recovery and hydrogen purchase makes the production process very costly.
- In MP, low electricity selling prices does not allow the process to recover the capital and operating costs. However, MP has the lowest energy demands and is able to provide all of its energy requirements which results in zero GHG emission.
- Decreasing the biomass price by enhanced artificial seaweed mass cultivation can strongly improve the process economics.