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Objective:

To develop a mathematical model to simulate the gas 
composition of biomass gasification in the bubbling 
fluidised gasifier.

Unsteady state non isothermal model based on reaction 
kinetics of produced combustible gases.

Investigation of the effects of operating parameters 
such as temperature and steam to biomass ratio on the 
gas compositions.

Validate the model with experimental data



Fluidised Bed- Gasification Technology with Steam as 
Gasification Agent
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Gasifier at UoC

• Leads a programme on 
‘Wood IGCC’ for wood 
industry.

• Has built a 100 kWth
laboratory-scale Fast 
Internal Circulating 
Fluidised Bed (FICFB) 
Gasifier for tests and 
evaluation of radiata pine 
residues.

• Developing producer gas 
cleaning technologies.

• Biofuels projects (Pyrolysis, 
Fischer-Tropsch process).



Biomass gasification
• There are two stages of physical and chemical changes in the 

biomass gasification:
– Decomposition of the biomass under high temperature. This is a 

similar process to biomass fast pyrolysis. 
– Secondary reactions involving the evolved volatiles.
– Char reaction with gasification agent.



Instantaneous Overall Pyrolysis Reactions
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For reaction above (fast pyrolysis in fluidized bed) a product distribution,
instead of a “typical” kinetic equation, was defined by Gonza´lez-Saiz, in his 
PhD Thesis “Advances in biomass gasification in fluidized bed”, with the 
same type of biomass as the one considered in our research (small pine wood 
chips) and in a fluidized bed working under similar experimental conditions
(Sadaka et al., 2002)

y
i
= Function (Temperature)  i corresponds to volatile gases & tar and char

can be used as initial condition



Secondary Reactions Involved in the evolved 
volatiles and Gasification of char reactions
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Hydrodynamic model  of Fluidization

•Mixing & distribution of solids  
& fluid – “Emulsion Region”

•Formation of motion of bubbles 
through the bed – “Bubble 
Region”

•Interphase mass transfer of 
particles and gases between the 
regions Fbe

•Emulsion phase – plug flow and 
all reactions occurs in this region

•Bubble phase – no solids, only 
water gas reaction and methane 
reforming reaction occurs.



Mass Balance
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Emulsion phase Mass balance
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Energy  Balance

Rate of heat 
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* Similarly for the bubble phase except all the terms applies except the last 
two terms 
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Boundary Conditions
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Hydrodynamics of Fluidized Bed

Gravitational force : 

Pressure drop given by 

Ergun’s Correlation of fixed bed 
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•At minimum Fluidization,
bed starts lifting.

•At this point the frictional 
upward lift force just 
exceeds the gravitational
force.
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Hydrodynamics of Fluidized Bed (Continues…)
Some variables involved in the model are closely interrelated through 

hydrodynamics derived from (Mori and Wen, 1975) and (Davidson et al., 
1985)

Bubble diameter: 
Maximum Bubble diameter: 
Initial bubble diameter: 

Bubble velocity:
Volume fraction of bubble:
Emulsion velocity:

Gas exchange co efficient 
b/n bubble & emulsion phase [1/s]
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Operating Conditions

• Arrhenius reaction type is used
• Temperature : 760 Deg C
• Feed rate : 20 kg/hr
• Steam/Biomass: 0.3
• Initial volatiles after instant fast pyrolysis

CH2,0= 0.0051 kmol/m3    (29.81 mol %)
CCO,0 = 0.0067 kmol/m3    (39.2 mol %)
CCO2,0= 0.0023 kmol/m3 (13.62 mol%)
CCH4,0= 0.0021 kmol/m3 (12.2 mol %)

• Initial concentration of steam ,
CH2O,0= 0.0015 kmol/m3

• Mass of Tar formed during Initial pyrolysis =1.41 kg
• Mass of char formed during Initial pyrolysis =2.99 kg



Experiment Results from published literature data

(Lv, Chang et al. 2004)
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(Gil et al., 1999)

Experiment Results from published literature data



Steady  State Gasifier Test showing the Transition Process from Heat-up 
to Gasification at the Start.
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Producer Gas Composition Changes with Different Fluidizing Gases to the Chute & 
Siphon
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Gas Composition on Dry Basis
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Gas Composition on Wet Basis
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(Franco et al., 2003)

Experiment Results from published literature data



Effects of Temperature and 
Steam to Biomass Ratio

• Effects of Increase in Temperature
I. H2 and CO increased

II. CO2 and CH4 decreased

• Effects of Increase in Steam to Biomass ratio.
I. CO2 increased

II. CO and H2 decreased

III. CH4 insignificant change ( remains unchanged)



Extension of the work

•Reaction kinetics of tar and higher hydrocarbon can be included.

•Parameters such as D1 and D2 are the axial dispersion co-efficient 
for the bubble to emulsion and Emulsion to bubble phase. The values
are taken such as D1 constitutes to plug flow and D2 to mixed flow.

• It is recommended to use the diffusion co-efficient of the individual 
gas components. Finding the appropriate values  for the dispersion 
co-efficient for individual gas components involved in the reactions 
between the phases, would improve the results.

• Both particle and gas phase void fractions are  assumed to be constants. 
Hence continuity equation along with the momentum equation can
be incorporated to the non isothermal reaction kinetics model  to evaluate
the changes in the void fraction along the length of the gasifier.



References

DAVIDSON, J. F., CLIFT, R. & HARRISON, D. (1985) Fluidization, London 
Orlando: Academic Press. 

FRANCO, C., PINTO, F., GULYURTLU, I. & CABRITA, I. (2003) The study of 
reactions influencing the biomass steam gasification process.Fuel, 82, 835-842.

GIL, J., CORELLA, J., AZNAR, M. P. & CABALLERO, M. A. (1999) Biomass 
gasification in atmospheric and bubbling fluidized bed: Effect of the type of gasifying
agent on the product distribution. Biomass and Bioenergy, 17, 389-403.

Lv, P. M., J. Chang, et al. (2004). "A kinetic study on biomass fast catalytic pyrolysis." 
Energy & Fuels 18(6): 1865-1869.

MORI, S. & WEN, C. Y. (1975) Estimation of bubble diameter in gaseous fluidized 
beds. AIChE Journal, 21, 109-115.

SADAKA, S. S., GHALY, A. E. & SABBAH, M. A. (2002) Two phase biomass air-
steam gasification model for fluidized bed reactors: Part II--model sensitivity. 
Biomass and Bioenergy, 22, 463-477.



Thank You!

Any Questions???


