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Introduction
 A three-stage-steady-state thermodynamic 

equilibrium model (TSM) including mass and 
energy balances was applied for steam-air-
blown biomass gasification in a dual 
circulation fluidized bed (CFB) to calculate 
the gas product composition, the LHV,
circulation ratio and the heat recovery of 
biomass.

 The heat required for gasification reaction 
was provided by the circulating bed material 
(silica sand)

 The final composition of the gas product is 
obtained from two-stage equilibrium model 
incorporated with biomass pyrolysis and 
combustion. 

 The effects of reaction temperature, steam 
to fuel ratio and oxygen to fuel ratio on the 
gas product composition and overall 
performance of CFB gasifier were studied 
base on the final gas composition. 
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Gasification 
(~850oC)

Combustion 
(~950oC)

Producer 
gas: CO, 
H2, CH4, 
CO2, H2O

Flue gas: O2, 
N2, CO2, 

H2O(Ash)

Additional 
fuel 

(biomass)

Biomass

Cooled silica sand, 
Char residue  and 

Ash

Heated silica  sand 
Provide heat for 
gasification zone

Steam-
Air

Air

 In the comparison of the final gas composition with steam gasification (for same 
biomass and operating conditions), the objective of this study (increase LHV of gas 
product) was confirmed.
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Three stage model (TSM)

Stage 2

Stage 3

Stage 1

Pyrolysis and 
combustion are 
divided into two steps: 
(1)  Biomass Pyrolysis: 
- Decomposes into 
gas, tar and char
- Thermal cracking of 
tar
(2)  CO and H2 
combustion reactions

Char-gas reactions
include: 
- Boudouard reaction
- Char-steam 
reactions

Gas-phase 
reaction is a 
Water-gas shift 
reaction

Hankyong National University – Department of Chemical Engineering – FACS Lab
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TSM/ Assumptions
Stage Reactions Products proposed Assumed References 

Pyrolysis First step: Thermal 

decomposition 

CO, CO2, CH4, H2 and H2O CO, CO2, CH4, 

H2 and H2O

Sadaka et al. (2002); 

Radmanesh et al. (2006); 

Wurzenberger et al. (2002);     

Rath et al. (2001)  [3,12-14]

Second step: Tar cracking CO, CO2, H2, heavier 

hydrocarbon (e. g., C2H6, 

C2H4, and C3H6), and inert tar.

Combustion reactions in 

very short time:

CO(g) + O2(g)→ CO2(g)

H2(g) + O2(g)→ H2O(g)

After combustion, the solid is 

fixed carbon (that does not 

react), the gases include: CO2, 

H2O, CO, H2, N2, CH4

The Oxygen 

reacted 

completely in 

very short time.

Smith et al. (2005) [15]

Solid–gas 

reactions

C(s) + CO2(g) ↔ 2CO(g)

C(s) + H2O(g) ↔ CO(g) + 

H2(g)

(Char unreacted) CO, CO2, 

H2, (H2O residue)

Char unreacted, 

CO, H2, H2O 

residue

Nguyen et al. (2010) ;    

Yoshida et al. (2008) [2,5]

Water–gas 

shift 

reactions

CO(g) +H2O(g) ↔ CO2(g) 

+ H2(g)

CO, CO2, H2, H2O CO, CO2, H2, 

H2O

Wei et al. (2007); Walawender

et al. (1985); Herguido et al. 

(1992) ;Sharma et al. (2008); 

Altafini et al. (2003) [4,6-9]

Hankyong National University – Department of Chemical Engineering – FACS Lab



TSM/ Structure of TSM 
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Stage 1

Pyrolysis

Combustion

Stage 2

Char-gas 
reactions

Stage 3

Gas-phase 
reaction

Empirical models combined

CO formation and CH4 formation

Steam participation

Non-equilibrium factor

References

Sakada et al.  
(2002) [3]

Fagbemi et al. 
(2001) [1]

Nguyen et al. 
(2010) [2]

Wei et al. 
(2007) [4]

𝜑𝜑𝐶𝐶𝐶𝐶 =
𝑛𝑛𝐶𝐶𝐶𝐶
𝑛𝑛𝐶𝐶𝐶𝐶2

= 4697 × exp(−
7162.3
𝑇𝑇

) 

𝜑𝜑𝐶𝐶𝐶𝐶 =
𝑛𝑛𝐶𝐶𝐶𝐶4

𝑛𝑛𝐶𝐶2

= 0.0013 × 𝑒𝑒𝑒𝑒𝑒𝑒(−
−6064.8

𝑇𝑇
) 

𝛽𝛽 =
𝑛𝑛𝐶𝐶2𝐶𝐶,0

𝑛𝑛𝐶𝐶2𝐶𝐶,𝑡𝑡𝑡𝑡𝑡𝑡
= 51.4 × 𝑒𝑒𝑒𝑒𝑒𝑒(−

7542.8
𝑇𝑇

) 

𝜅𝜅 = 9 × 1010 × 𝑒𝑒𝑒𝑒𝑒𝑒(−
24400
𝑇𝑇

) 



TSM/ Empirical models (1/4)

Fig. 1. Empirical model for CH4 formation 
versus pyrolysis temperature. Experiment 

data were taken from Fagbemi [1] 

Fig. 2. Empirical model for CO2 formation 
versus pyrolysis temperature. Experiment 

data were taken from Fagbemi [1] 
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TSM/ Empirical models (2/4)
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Steam participation is expressed as the steam amount involved in the char-gas 
equilibrium reactions. β = (nH2O,involved/nH2O,total)

Fig. 3. Water amount contributing to the equilibrium reaction of the second stage 
(β), this function was taken from Nguyen et al. (2010) [2]
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TSM/ Empirical models (3/4)
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The equilibrium constant of water-gas shift reaction is corrected by the non-equilibrium 
factor (κ)

Fig. 4. Effect of gasification on the equilibrium constant of the water-gas shift reaction: (a) equilibrium 
constant vs. gasification temperature; (b) non-equilibrium factor (κ) vs. gasification temperature
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TSM/ Empirical models (4/4)

Fig.5. The temperature effect comparison between empirical sub-models  
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Operating conditions (1/2)

Table 1: Analysis properties of Korean wood chips, that used in this study.
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Biomass properties

Proximate analysis (wt%) Ultimate analysis (wt%)

H2O 6.40 C 50.80

Volatile 75.90 H 5.37

Fixed carbon 17.40 O 43.6

Ash 0.30 N 0.00

S 0.00

Cl 0.00
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Operating conditions (2/2)

Table 2: Operating conditions of each case study.
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Operating conditions

Case study Effects of S/F 

ratio

Effects of gasification 

temperature

Effects of Oxygen 

to Fuel ratio

Temperature of steam inlet (K) 673 673 673

Temperature of fuel (biomass) inlet (K) 598 598 598

Required heat capacity (MW) 100 100 100

Gasifier temperature (K) 1173 900-1173 1173

Steam to fuel ratio(kg/kg) 1.0-2.0 1.0 1.0

O/C ratio (-) 

(Oxygen to fuel ratio (kg/kg))

2 

(0.46)

2 

(0.46)

1.0  - 2.0

(0.0 - 4.6)

http://hknu.ac.kr/~limyi/index.htm�
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Results and Discussion (1/7) 

Fig. 6. The comparison  of final gas composition between TSM of Steam-air-blown  gasification  and Steam 
gasification (fixed Steam to fuel ratio = 0.5 and Oxygen to Fuel ratio = 0.23) with the variety of gasification  
temperature.
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Effect of Temperature on the final gas product composition

-The water-gas shift reaction is known 
to proceed forward at the 
temperatures above 700oC in the 
presence of steam [6,17].  Increase  
of H2 and CO2 formations and a 
decrease  of CO formation when 
temperature increase.  

-In air blown system, combustion 
reactions lead to produce CO2 and 
steal CO (as initial contents of stage 2 
and 3)  reduce influence of water-
gas shift reaction  CO content ↑
and H2 content ↓ in the final gas 
product
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Results and Discussion (2/7) 

Fig. 7. The comparison of final gas composition between TSM of Steam-air-blown gasification and Steam 
gasification (fixed Temperature = 800oC and Oxygen to Fuel ratio = 0.23) with the variety of Steam to Fuel ratio 
(S/F). 

Hankyong National University – Department of Chemical Engineering – FACS Lab

*Homepage: http://hknu.ac.kr/~limyi/index.htm, email: limyi@hknu.ac.kr

Effect of S/F ratio on the final gas product composition

-The forward water-gas shift reaction rate 
increases with the increase of steam to fuel 
ratio [17,18]. leads to increase of H2 and 
CO2, while CO and CH4 decrease. 

- In overall, the variation of the syngas
composition in biomass gasification with 
respect to the steam to fuel ratio is mainly 
influenced by the water-gas shift reaction 
[6,7,19,20]
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Results and Discussion (3/7) 

Fig. 8. The effect of Oxygen to fuel ratios on the final gas compositions (fixed Temperature 
=800oC and Steam to Fuel ratio = 0.5) in TSM of Steam-air-blown gasification.
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Effect of O/F ratio on the final gas product composition

-The oxygen content lead to violent combust 
of CO and H2  makes higher CO2 content 
in final gas product.

-In this study, we found an optimum point is 
O/F = 0.12 (for the highest CO content in 
the final gas composition highest LHV of 
final gas product).

Optimum 
point
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Results and Discussion (4/7) 

Fig. 9. The 3D-plot  of  gas production rate versus Steam to Fuel ratio and Oxygen to Fuel ratio 
at gasifier temperature is 800oC
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Results and Discussion (5/7) 

Fig. 10. The effect of Steam to Fuel ratios and Oxygen to Fuel ratios on the Lower heating Value 
of gas product (at T = 800oC).
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Results and Discussion (6/7) 

Fig. 11. The circulation ratio inside a CFB gasifier versus Steam to Fuel ratio and Oxygen to 
Fuel ratio (at T = 800oC)
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Results and Discussion (7/7) 

Fig. 12. The 3D-plot of cold gas efficiency in a CFB gasifier versus Steam to Fuel ratios and 
Oxygen to Fuel (at T = 800oC)
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Heat recovery at optimum point 
of O/F ratio
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Conclusions 

 The TSM is developed  to calculate the final gas composition, 
lower heating value, circulation ratio and heat recovery in a CFB 
gasifier. 

 Due to the presence of oxygen in the gasifier, both biomass 
pyrolysis and gas combustion were taken into account in the first 
stage of model.

 With the comparison between two studies (steam gasification and 
steam-air-blown gasification), we conclude that, the biomass 
gasification process with steam-air-blown produced the higher 
LHV of gas product than the steam gasification and suitable for 
IGCC power generation system.

 In this study, we also found the optimum Oxygen/Fuel ratio is 
0.12 when the gasifier temperature is 800oC and Steam/Fuel ratio 
is 0.5; at this point the heat recovery is higher than 82%.
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