Ultra Low Flow Rate Measurement

INTRODUCTION

micro chip

. BioMEMS ,

BioMEMS

BioMEMS device

BioMEMS device

 H_2O_2

enzyme

가 . Enzyme 가 . H_2O_2 가 flow cell

. (Fig. 1)

. H₂O₂

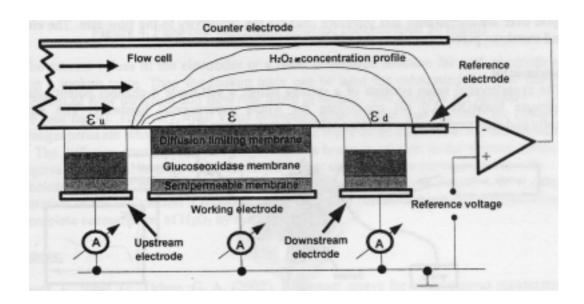


Fig. 1. BioMEMS scheme

THEORY

 H_2O_2 detected at the working electrode: $\epsilon(v)$ mol $H_2O_2 \rightarrow \epsilon(v)$ mol O_2 Emission of H_2O_2 to the flow cell : $[1-\epsilon(v)]$ mol H_2O_2

Glucoseoxidase membrane: 1 mol glucose + 1 mol $O_2 \rightarrow$ 1 mol H_2O_2

 H_2O_2 detected at the upstream electrode: [1- ϵ (v)][ϵ _u(v)] mol $H_2O_2 \rightarrow$

$$[1-\varepsilon(v)][\varepsilon_u(v)] \text{ mol } O_2$$

 H_2O_2 detected at the downstream electrode: [1-\$\epsilon(v)\$][\$\epsilon_d(v)\$] mol \$H_2O_2\$ \$\to\$

$$[1-\epsilon(v)][\epsilon_d(v)]$$
 mol O_2

total loss of H_2O_2 to the flow cell: [1- $\epsilon(v)$][1- $\{\epsilon_d(v)$ + $\epsilon_u(v)\}$] H_2O_2

$$\epsilon,\; \epsilon_d \; ,\; \epsilon_u \qquad \qquad V \qquad \qquad .$$

. (Fig. 2)

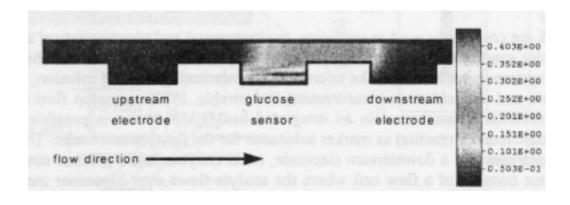


Fig. 2. Numerically simulated H₂O₂ concentration profile

Flow cell , , ,

. simulation . Flow cell

가 .

.

EXPERIMENTAL

syringe , 4 channel potentiostat,

bioMON software . Fig. 3

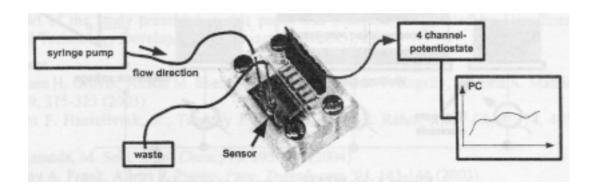


Fig. 3. Experimental setup

IMTEK-Sensors microtechnology

. Flow cell

가 250 nl $0.05~\text{mm}^2$. 400 μm

pitch 800 μm .

RESULTS

Fig. 4 data . Fig. 4

가

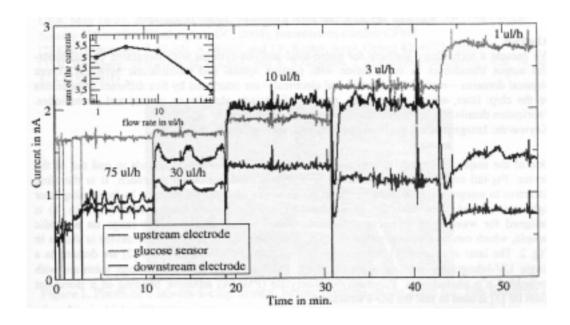


Fig. 4. Flow rate experiment (glucose concentration 90 mg/dl)

table . 300 picoliter

table

per second (~ 1 μ L/h) .

hydrogenperoxide가 가 . Hydrogenperoxide

가